Properties

Label 8-1470e4-1.1-c1e4-0-13
Degree $8$
Conductor $4.669\times 10^{12}$
Sign $1$
Analytic cond. $18983.5$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 4·5-s + 9-s − 4·11-s + 4·20-s + 5·25-s + 16·31-s + 36-s + 8·41-s − 4·44-s + 4·45-s − 16·55-s + 20·59-s − 4·61-s − 64-s + 48·71-s − 20·89-s − 4·99-s + 5·100-s + 16·101-s + 20·109-s + 26·121-s + 16·124-s − 4·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.78·5-s + 1/3·9-s − 1.20·11-s + 0.894·20-s + 25-s + 2.87·31-s + 1/6·36-s + 1.24·41-s − 0.603·44-s + 0.596·45-s − 2.15·55-s + 2.60·59-s − 0.512·61-s − 1/8·64-s + 5.69·71-s − 2.11·89-s − 0.402·99-s + 1/2·100-s + 1.59·101-s + 1.91·109-s + 2.36·121-s + 1.43·124-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(18983.5\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(8.010026459\)
\(L(\frac12)\) \(\approx\) \(8.010026459\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2^2$ \( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good11$C_2^2$ \( ( 1 + 2 T - 7 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 30 T^{2} + 371 T^{4} + 30 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$$\times$$C_2^2$ \( ( 1 - 12 T + 107 T^{2} - 12 p T^{3} + p^{2} T^{4} )( 1 + 12 T + 107 T^{2} + 12 p T^{3} + p^{2} T^{4} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 30 T^{2} - 1309 T^{4} + 30 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 70 T^{2} + 2091 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 - 10 T + 41 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 70 T^{2} + 411 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
73$C_2^3$ \( 1 + 130 T^{2} + 11571 T^{4} + 130 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.93743255282117234196903430238, −6.37391262335333477219694472631, −6.29965613699331467012539237489, −6.27470747531857711755662236021, −5.92345023724382359239524440809, −5.61965115653977744326222805700, −5.47069668255571452869749068466, −5.35217249131181093973326512021, −5.28256237295560185596622820414, −4.61656698214323637008634901469, −4.51442523509593169177359648808, −4.47961252043037423832187204589, −4.38046525562699217048948108261, −3.59036905987497069791817264788, −3.58202910004163990823283575646, −3.22054808321400739463072999434, −3.12026566243053883354757650983, −2.51853106904935316420383406860, −2.39121487873036968390587065416, −2.22808566479561012462342435614, −2.10481797138180298725424723454, −1.79178703458543014239233849718, −1.03931858519793552282828813469, −0.974165179803274292867103777158, −0.57888197889722498363021273807, 0.57888197889722498363021273807, 0.974165179803274292867103777158, 1.03931858519793552282828813469, 1.79178703458543014239233849718, 2.10481797138180298725424723454, 2.22808566479561012462342435614, 2.39121487873036968390587065416, 2.51853106904935316420383406860, 3.12026566243053883354757650983, 3.22054808321400739463072999434, 3.58202910004163990823283575646, 3.59036905987497069791817264788, 4.38046525562699217048948108261, 4.47961252043037423832187204589, 4.51442523509593169177359648808, 4.61656698214323637008634901469, 5.28256237295560185596622820414, 5.35217249131181093973326512021, 5.47069668255571452869749068466, 5.61965115653977744326222805700, 5.92345023724382359239524440809, 6.27470747531857711755662236021, 6.29965613699331467012539237489, 6.37391262335333477219694472631, 6.93743255282117234196903430238

Graph of the $Z$-function along the critical line