L(s) = 1 | + (0.707 − 0.707i)2-s + (−0.707 + 0.707i)3-s − 1.00i·4-s + (2.22 − 0.243i)5-s + 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + (1.39 − 1.74i)10-s − 5.33·11-s + (0.707 + 0.707i)12-s + (3.82 − 3.82i)13-s + (−1.39 + 1.74i)15-s − 1.00·16-s + (−5.19 − 5.19i)17-s + (−0.707 − 0.707i)18-s − 3.04·19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (−0.408 + 0.408i)3-s − 0.500i·4-s + (0.994 − 0.108i)5-s + 0.408i·6-s + (−0.250 − 0.250i)8-s − 0.333i·9-s + (0.442 − 0.551i)10-s − 1.60·11-s + (0.204 + 0.204i)12-s + (1.06 − 1.06i)13-s + (−0.361 + 0.450i)15-s − 0.250·16-s + (−1.26 − 1.26i)17-s + (−0.166 − 0.166i)18-s − 0.697·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.566 + 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.566 + 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.579057195\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.579057195\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (-2.22 + 0.243i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 5.33T + 11T^{2} \) |
| 13 | \( 1 + (-3.82 + 3.82i)T - 13iT^{2} \) |
| 17 | \( 1 + (5.19 + 5.19i)T + 17iT^{2} \) |
| 19 | \( 1 + 3.04T + 19T^{2} \) |
| 23 | \( 1 + (1.63 + 1.63i)T + 23iT^{2} \) |
| 29 | \( 1 - 4.97iT - 29T^{2} \) |
| 31 | \( 1 + 6.37iT - 31T^{2} \) |
| 37 | \( 1 + (-2.11 + 2.11i)T - 37iT^{2} \) |
| 41 | \( 1 + 10.4iT - 41T^{2} \) |
| 43 | \( 1 + (-1.27 - 1.27i)T + 43iT^{2} \) |
| 47 | \( 1 + (-8.75 - 8.75i)T + 47iT^{2} \) |
| 53 | \( 1 + (4.91 + 4.91i)T + 53iT^{2} \) |
| 59 | \( 1 - 6.15T + 59T^{2} \) |
| 61 | \( 1 - 0.777iT - 61T^{2} \) |
| 67 | \( 1 + (5.72 - 5.72i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.85T + 71T^{2} \) |
| 73 | \( 1 + (-5.03 + 5.03i)T - 73iT^{2} \) |
| 79 | \( 1 + 11.3iT - 79T^{2} \) |
| 83 | \( 1 + (-2.41 + 2.41i)T - 83iT^{2} \) |
| 89 | \( 1 - 3.19T + 89T^{2} \) |
| 97 | \( 1 + (4.72 + 4.72i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.344030072870565737077689345953, −8.710407030530354534553125624942, −7.57910152118073833017466473743, −6.42567713335701224869213380920, −5.69043032520078784842232236362, −5.13310730213984838891706183087, −4.24462424188308330777727986208, −2.93286453261007002752643181696, −2.21316676833868331495506079249, −0.52091996337644473069490293193,
1.73825733447043262473214833592, 2.60715483638275346859170034139, 4.05393178043500898610192175641, 4.93767161590473250960244530775, 5.91390397552145967197382808136, 6.31579420213726897768404260313, 7.08135285419764490166938248518, 8.229380418970045819144843569100, 8.691233948936327447990467252341, 9.836378503385035411372584865169