L(s) = 1 | + (0.707 − 0.707i)2-s + (0.707 − 0.707i)3-s − 1.00i·4-s + (−1.19 + 1.89i)5-s − 1.00i·6-s + (−0.707 − 0.707i)8-s − 1.00i·9-s + (0.493 + 2.18i)10-s − 1.97·11-s + (−0.707 − 0.707i)12-s + (−2.19 + 2.19i)13-s + (0.493 + 2.18i)15-s − 1.00·16-s + (−3.25 − 3.25i)17-s + (−0.707 − 0.707i)18-s − 4.21·19-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.408 − 0.408i)3-s − 0.500i·4-s + (−0.533 + 0.845i)5-s − 0.408i·6-s + (−0.250 − 0.250i)8-s − 0.333i·9-s + (0.156 + 0.689i)10-s − 0.596·11-s + (−0.204 − 0.204i)12-s + (−0.608 + 0.608i)13-s + (0.127 + 0.563i)15-s − 0.250·16-s + (−0.789 − 0.789i)17-s + (−0.166 − 0.166i)18-s − 0.967·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.966 - 0.256i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.966 - 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5726249571\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5726249571\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (1.19 - 1.89i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + 1.97T + 11T^{2} \) |
| 13 | \( 1 + (2.19 - 2.19i)T - 13iT^{2} \) |
| 17 | \( 1 + (3.25 + 3.25i)T + 17iT^{2} \) |
| 19 | \( 1 + 4.21T + 19T^{2} \) |
| 23 | \( 1 + (4.15 + 4.15i)T + 23iT^{2} \) |
| 29 | \( 1 + 8.94iT - 29T^{2} \) |
| 31 | \( 1 - 1.73iT - 31T^{2} \) |
| 37 | \( 1 + (1.96 - 1.96i)T - 37iT^{2} \) |
| 41 | \( 1 + 6.55iT - 41T^{2} \) |
| 43 | \( 1 + (6.33 + 6.33i)T + 43iT^{2} \) |
| 47 | \( 1 + (-4.29 - 4.29i)T + 47iT^{2} \) |
| 53 | \( 1 + (-8.08 - 8.08i)T + 53iT^{2} \) |
| 59 | \( 1 - 4.20T + 59T^{2} \) |
| 61 | \( 1 - 11.1iT - 61T^{2} \) |
| 67 | \( 1 + (-3.89 + 3.89i)T - 67iT^{2} \) |
| 71 | \( 1 + 3.86T + 71T^{2} \) |
| 73 | \( 1 + (10.7 - 10.7i)T - 73iT^{2} \) |
| 79 | \( 1 - 2.55iT - 79T^{2} \) |
| 83 | \( 1 + (-9.52 + 9.52i)T - 83iT^{2} \) |
| 89 | \( 1 + 6.19T + 89T^{2} \) |
| 97 | \( 1 + (1.48 + 1.48i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.054202150436506062872470364920, −8.260700020144303140352589016671, −7.30477793823545914689194375924, −6.73207537652288870012685960094, −5.83356477235334087356049074480, −4.52521819658996519063387489361, −3.93024993443090987342597246561, −2.59734771296872833399298795897, −2.25699491352490323749389898688, −0.16435747898454862091969580807,
1.97503808825808439975101503220, 3.28963088559298613670188566191, 4.12265718178334168312225667111, 4.92341574648798596681671503335, 5.58339973399417929857694686588, 6.72180245951268229481338914913, 7.70581749359504056531567430940, 8.282733647208186762025514956500, 8.867338681196486247025096945187, 9.848957911434826485088817103305