L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + 0.999·6-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (−0.499 + 0.866i)10-s + (0.499 + 0.866i)12-s − 2·13-s + 0.999·15-s + (−0.5 − 0.866i)16-s + (−3 + 5.19i)17-s + (0.499 − 0.866i)18-s + (4 + 6.92i)19-s − 0.999·20-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.158 + 0.273i)10-s + (0.144 + 0.249i)12-s − 0.554·13-s + 0.258·15-s + (−0.125 − 0.216i)16-s + (−0.727 + 1.26i)17-s + (0.117 − 0.204i)18-s + (0.917 + 1.58i)19-s − 0.223·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.910421935\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.910421935\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4 - 6.92i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (2 - 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5 - 8.66i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + 4T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3 + 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6 - 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5 + 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + (5 - 8.66i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.728497547498058533735334735836, −8.650018660748479609457998307355, −8.038269448391604779238755136992, −7.29740415629466908276274095435, −6.42931842579313352490323337702, −5.88876688056146524080617081376, −4.79675840640872542536590620437, −3.74678196710062164601131419384, −2.80844703277181146001516374526, −1.56102080713007626414566578129,
0.65780761910369101776184919206, 2.34334065828303893841005143162, 2.97515717724974212137352797841, 4.30649302295543704883241294508, 4.84708268021140575327901544115, 5.64881373260640418407978758687, 6.85182584048955383454710540330, 7.68254853713483531215514148454, 8.894303070404387397383973723733, 9.338080994032944608485989654332