# Properties

 Degree $2$ Conductor $1470$ Sign $0.730 - 0.683i$ Motivic weight $1$ Primitive yes Self-dual no Analytic rank $0$

# Learn more about

## Dirichlet series

 L(s)  = 1 + i·2-s − i·3-s − 4-s + (1.63 − 1.52i)5-s + 6-s − i·8-s − 9-s + (1.52 + 1.63i)10-s + 4.46·11-s + i·12-s + 5.88i·13-s + (−1.52 − 1.63i)15-s + 16-s + 7.73i·17-s − i·18-s − 6.61·19-s + ⋯
 L(s)  = 1 + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (0.730 − 0.683i)5-s + 0.408·6-s − 0.353i·8-s − 0.333·9-s + (0.483 + 0.516i)10-s + 1.34·11-s + 0.288i·12-s + 1.63i·13-s + (−0.394 − 0.421i)15-s + 0.250·16-s + 1.87i·17-s − 0.235i·18-s − 1.51·19-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.730 - 0.683i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.730 - 0.683i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1470$$    =    $$2 \cdot 3 \cdot 5 \cdot 7^{2}$$ Sign: $0.730 - 0.683i$ Motivic weight: $$1$$ Character: $\chi_{1470} (589, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 1470,\ (\ :1/2),\ 0.730 - 0.683i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$1.891042819$$ $$L(\frac12)$$ $$\approx$$ $$1.891042819$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 - iT$$
3 $$1 + iT$$
5 $$1 + (-1.63 + 1.52i)T$$
7 $$1$$
good11 $$1 - 4.46T + 11T^{2}$$
13 $$1 - 5.88iT - 13T^{2}$$
17 $$1 - 7.73iT - 17T^{2}$$
19 $$1 + 6.61T + 19T^{2}$$
23 $$1 - 2.61iT - 23T^{2}$$
29 $$1 - 8.17T + 29T^{2}$$
31 $$1 - 8.46T + 31T^{2}$$
37 $$1 + 3.18iT - 37T^{2}$$
41 $$1 - 3.56T + 41T^{2}$$
43 $$1 - 1.43iT - 43T^{2}$$
47 $$1 + 6.79iT - 47T^{2}$$
53 $$1 + 1.38iT - 53T^{2}$$
59 $$1 + 4.66T + 59T^{2}$$
61 $$1 - 9.79T + 61T^{2}$$
67 $$1 + 1.85iT - 67T^{2}$$
71 $$1 - 2.02T + 71T^{2}$$
73 $$1 - 4.01iT - 73T^{2}$$
79 $$1 - 6.98T + 79T^{2}$$
83 $$1 - 5.35iT - 83T^{2}$$
89 $$1 + 14.3T + 89T^{2}$$
97 $$1 - 7.71iT - 97T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−9.363903847767506236693879513681, −8.531160516898648642003364764786, −8.330170290417244177754172124993, −6.73217744905807100863378592020, −6.52794758005241517385137722900, −5.81999939670580109944034736216, −4.49437298933034487981161617281, −4.00808344906820659418692543248, −2.10684397514615877681710765312, −1.26463438058089183687511714733, 0.889614785385598890267374279983, 2.55523549639596507158647859901, 3.04917030068978204318999567876, 4.27214720632854756794314729677, 5.05570125460045841422964773894, 6.13869100192409424353587114002, 6.76559418768904874096708750348, 8.045534560758007332774049989327, 8.873671705653559392261885719970, 9.630236878958459901756942912405