Properties

Label 2-1470-5.4-c1-0-38
Degree $2$
Conductor $1470$
Sign $0.360 + 0.932i$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + i·3-s − 4-s + (0.806 + 2.08i)5-s − 6-s i·8-s − 9-s + (−2.08 + 0.806i)10-s − 4.78·11-s i·12-s − 3.17i·13-s + (−2.08 + 0.806i)15-s + 16-s − 5.22i·17-s i·18-s − 3.17·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (0.360 + 0.932i)5-s − 0.408·6-s − 0.353i·8-s − 0.333·9-s + (−0.659 + 0.255i)10-s − 1.44·11-s − 0.288i·12-s − 0.879i·13-s + (−0.538 + 0.208i)15-s + 0.250·16-s − 1.26i·17-s − 0.235i·18-s − 0.727·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.360 + 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.360 + 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $0.360 + 0.932i$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1470} (589, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ 0.360 + 0.932i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2040327759\)
\(L(\frac12)\) \(\approx\) \(0.2040327759\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 - iT \)
5 \( 1 + (-0.806 - 2.08i)T \)
7 \( 1 \)
good11 \( 1 + 4.78T + 11T^{2} \)
13 \( 1 + 3.17iT - 13T^{2} \)
17 \( 1 + 5.22iT - 17T^{2} \)
19 \( 1 + 3.17T + 19T^{2} \)
23 \( 1 + 7.17iT - 23T^{2} \)
29 \( 1 + 2.38T + 29T^{2} \)
31 \( 1 + 4.17T + 31T^{2} \)
37 \( 1 - 7.17iT - 37T^{2} \)
41 \( 1 - 2.05T + 41T^{2} \)
43 \( 1 - 2iT - 43T^{2} \)
47 \( 1 + 11.5iT - 47T^{2} \)
53 \( 1 - 8.11iT - 53T^{2} \)
59 \( 1 + 10.7T + 59T^{2} \)
61 \( 1 + 7.11T + 61T^{2} \)
67 \( 1 - 9.56iT - 67T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 - 4iT - 73T^{2} \)
79 \( 1 + 12.1T + 79T^{2} \)
83 \( 1 + 3.39iT - 83T^{2} \)
89 \( 1 - 9.56T + 89T^{2} \)
97 \( 1 - 1.27iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.367692915930765998022180615532, −8.453414940465465619854570624040, −7.68683472854622129880143089742, −6.95473217599351483914478993247, −6.00319211185459689277505916971, −5.30182819762312333438316712092, −4.49836440968237360086329255152, −3.17373679532739755714162666024, −2.49401530361223631991477100296, −0.07628287618373447445220759771, 1.56445677607076047025220064614, 2.20998805239356689232886078334, 3.59072745456594282346403574202, 4.59518940668234035355814591122, 5.50484860265721607693289869576, 6.16665733617471200519924118786, 7.53889033863424725774076976872, 8.086295020341398999710860118149, 9.011009938987869649938701592523, 9.524784839029802552862597589304

Graph of the $Z$-function along the critical line