Properties

Label 2-1470-5.4-c1-0-14
Degree $2$
Conductor $1470$
Sign $0.894 + 0.447i$
Analytic cond. $11.7380$
Root an. cond. $3.42607$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + i·3-s − 4-s + (−2 − i)5-s + 6-s + i·8-s − 9-s + (−1 + 2i)10-s − 5·11-s i·12-s + i·13-s + (1 − 2i)15-s + 16-s + 2i·17-s + i·18-s + 7·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (−0.894 − 0.447i)5-s + 0.408·6-s + 0.353i·8-s − 0.333·9-s + (−0.316 + 0.632i)10-s − 1.50·11-s − 0.288i·12-s + 0.277i·13-s + (0.258 − 0.516i)15-s + 0.250·16-s + 0.485i·17-s + 0.235i·18-s + 1.60·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1470\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(11.7380\)
Root analytic conductor: \(3.42607\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1470} (589, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1470,\ (\ :1/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.088208770\)
\(L(\frac12)\) \(\approx\) \(1.088208770\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 - iT \)
5 \( 1 + (2 + i)T \)
7 \( 1 \)
good11 \( 1 + 5T + 11T^{2} \)
13 \( 1 - iT - 13T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 - 7T + 19T^{2} \)
23 \( 1 + 3iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 6T + 31T^{2} \)
37 \( 1 + 5iT - 37T^{2} \)
41 \( 1 - 9T + 41T^{2} \)
43 \( 1 + 10iT - 43T^{2} \)
47 \( 1 - 13iT - 47T^{2} \)
53 \( 1 - iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 6iT - 67T^{2} \)
71 \( 1 + 2T + 71T^{2} \)
73 \( 1 - 4iT - 73T^{2} \)
79 \( 1 - 14T + 79T^{2} \)
83 \( 1 + 10iT - 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.523016099171869295072700801870, −8.753458223904739243849774299404, −7.966098742367669350050663928217, −7.36332304463235693496451944900, −5.83076933706513894768780898637, −5.01934241822842419254120534218, −4.32223120364492829701001689555, −3.38005002259004427887055595411, −2.48684151330262709961092652433, −0.75155539483712145679195271728, 0.71703134141693045798973665784, 2.65957645536533251781486224490, 3.43212948861950038759447224791, 4.78853758723080216506020188348, 5.44836009546409179146669427874, 6.47508992198743382441741548276, 7.35894510818848211701162857017, 7.79255165723859507121450273367, 8.324780208928235940542224213421, 9.506858341875896690407733367347

Graph of the $Z$-function along the critical line