L(s) = 1 | + (6.10 − 10.5i)2-s + (−13.5 − 23.3i)3-s + (−10.5 − 18.2i)4-s + (142. − 246. i)5-s − 329.·6-s + 1.30e3·8-s + (−364.5 + 631. i)9-s + (−1.73e3 − 3.01e3i)10-s + (3.64e3 + 6.31e3i)11-s + (−285. + 493. i)12-s + 8.51e3·13-s − 7.68e3·15-s + (9.32e3 − 1.61e4i)16-s + (1.67e4 + 2.89e4i)17-s + (4.45e3 + 7.70e3i)18-s + (4.45e3 − 7.71e3i)19-s + ⋯ |
L(s) = 1 | + (0.539 − 0.934i)2-s + (−0.288 − 0.499i)3-s + (−0.0825 − 0.142i)4-s + (0.509 − 0.882i)5-s − 0.623·6-s + 0.901·8-s + (−0.166 + 0.288i)9-s + (−0.549 − 0.952i)10-s + (0.825 + 1.42i)11-s + (−0.0476 + 0.0825i)12-s + 1.07·13-s − 0.588·15-s + (0.568 − 0.985i)16-s + (0.825 + 1.43i)17-s + (0.179 + 0.311i)18-s + (0.148 − 0.257i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(3.586381336\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.586381336\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (13.5 + 23.3i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-6.10 + 10.5i)T + (-64 - 110. i)T^{2} \) |
| 5 | \( 1 + (-142. + 246. i)T + (-3.90e4 - 6.76e4i)T^{2} \) |
| 11 | \( 1 + (-3.64e3 - 6.31e3i)T + (-9.74e6 + 1.68e7i)T^{2} \) |
| 13 | \( 1 - 8.51e3T + 6.27e7T^{2} \) |
| 17 | \( 1 + (-1.67e4 - 2.89e4i)T + (-2.05e8 + 3.55e8i)T^{2} \) |
| 19 | \( 1 + (-4.45e3 + 7.71e3i)T + (-4.46e8 - 7.74e8i)T^{2} \) |
| 23 | \( 1 + (2.72e4 - 4.71e4i)T + (-1.70e9 - 2.94e9i)T^{2} \) |
| 29 | \( 1 + 3.24e4T + 1.72e10T^{2} \) |
| 31 | \( 1 + (-8.45e4 - 1.46e5i)T + (-1.37e10 + 2.38e10i)T^{2} \) |
| 37 | \( 1 + (4.96e4 - 8.59e4i)T + (-4.74e10 - 8.22e10i)T^{2} \) |
| 41 | \( 1 - 2.35e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 2.89e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + (-6.04e5 + 1.04e6i)T + (-2.53e11 - 4.38e11i)T^{2} \) |
| 53 | \( 1 + (-9.89e4 - 1.71e5i)T + (-5.87e11 + 1.01e12i)T^{2} \) |
| 59 | \( 1 + (1.11e6 + 1.92e6i)T + (-1.24e12 + 2.15e12i)T^{2} \) |
| 61 | \( 1 + (5.30e5 - 9.18e5i)T + (-1.57e12 - 2.72e12i)T^{2} \) |
| 67 | \( 1 + (1.87e6 + 3.24e6i)T + (-3.03e12 + 5.24e12i)T^{2} \) |
| 71 | \( 1 + 2.99e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + (3.28e6 + 5.69e6i)T + (-5.52e12 + 9.56e12i)T^{2} \) |
| 79 | \( 1 + (3.54e6 - 6.14e6i)T + (-9.60e12 - 1.66e13i)T^{2} \) |
| 83 | \( 1 + 4.41e5T + 2.71e13T^{2} \) |
| 89 | \( 1 + (5.92e6 - 1.02e7i)T + (-2.21e13 - 3.83e13i)T^{2} \) |
| 97 | \( 1 - 4.49e6T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92695124740729032605461515622, −10.72758016254858843148500726313, −9.729485765703523612443861422641, −8.469929457853419244997646792815, −7.23010163012633003884373828935, −5.89404386556545927708035907722, −4.66742180985413836137642096944, −3.56011387611497406119922586134, −1.72372403479761316494863089348, −1.35619670645607308027649283627,
0.998571549406775535855489345688, 3.01464677831036009769022629561, 4.28430354580104729973503262554, 5.87706382077652038011646073457, 6.09230369089135261145654767301, 7.33489609802139204072823477900, 8.715117541148683485467210163993, 10.01117563979775456203459955483, 10.89741843927464523439439492620, 11.69912600178178114351582622306