L(s) = 1 | + (6.10 − 10.5i)2-s + (−13.5 − 23.3i)3-s + (−10.5 − 18.2i)4-s + (142. − 246. i)5-s − 329.·6-s + 1.30e3·8-s + (−364.5 + 631. i)9-s + (−1.73e3 − 3.01e3i)10-s + (3.64e3 + 6.31e3i)11-s + (−285. + 493. i)12-s + 8.51e3·13-s − 7.68e3·15-s + (9.32e3 − 1.61e4i)16-s + (1.67e4 + 2.89e4i)17-s + (4.45e3 + 7.70e3i)18-s + (4.45e3 − 7.71e3i)19-s + ⋯ |
L(s) = 1 | + (0.539 − 0.934i)2-s + (−0.288 − 0.499i)3-s + (−0.0825 − 0.142i)4-s + (0.509 − 0.882i)5-s − 0.623·6-s + 0.901·8-s + (−0.166 + 0.288i)9-s + (−0.549 − 0.952i)10-s + (0.825 + 1.42i)11-s + (−0.0476 + 0.0825i)12-s + 1.07·13-s − 0.588·15-s + (0.568 − 0.985i)16-s + (0.825 + 1.43i)17-s + (0.179 + 0.311i)18-s + (0.148 − 0.257i)19-s + ⋯ |
Λ(s)=(=(147s/2ΓC(s)L(s)(0.386+0.922i)Λ(8−s)
Λ(s)=(=(147s/2ΓC(s+7/2)L(s)(0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
147
= 3⋅72
|
Sign: |
0.386+0.922i
|
Analytic conductor: |
45.9205 |
Root analytic conductor: |
6.77647 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ147(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 147, ( :7/2), 0.386+0.922i)
|
Particular Values
L(4) |
≈ |
3.586381336 |
L(21) |
≈ |
3.586381336 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(13.5+23.3i)T |
| 7 | 1 |
good | 2 | 1+(−6.10+10.5i)T+(−64−110.i)T2 |
| 5 | 1+(−142.+246.i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(−3.64e3−6.31e3i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1−8.51e3T+6.27e7T2 |
| 17 | 1+(−1.67e4−2.89e4i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(−4.45e3+7.71e3i)T+(−4.46e8−7.74e8i)T2 |
| 23 | 1+(2.72e4−4.71e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+3.24e4T+1.72e10T2 |
| 31 | 1+(−8.45e4−1.46e5i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1+(4.96e4−8.59e4i)T+(−4.74e10−8.22e10i)T2 |
| 41 | 1−2.35e5T+1.94e11T2 |
| 43 | 1+2.89e5T+2.71e11T2 |
| 47 | 1+(−6.04e5+1.04e6i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1+(−9.89e4−1.71e5i)T+(−5.87e11+1.01e12i)T2 |
| 59 | 1+(1.11e6+1.92e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(5.30e5−9.18e5i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(1.87e6+3.24e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+2.99e6T+9.09e12T2 |
| 73 | 1+(3.28e6+5.69e6i)T+(−5.52e12+9.56e12i)T2 |
| 79 | 1+(3.54e6−6.14e6i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+4.41e5T+2.71e13T2 |
| 89 | 1+(5.92e6−1.02e7i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1−4.49e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.92695124740729032605461515622, −10.72758016254858843148500726313, −9.729485765703523612443861422641, −8.469929457853419244997646792815, −7.23010163012633003884373828935, −5.89404386556545927708035907722, −4.66742180985413836137642096944, −3.56011387611497406119922586134, −1.72372403479761316494863089348, −1.35619670645607308027649283627,
0.998571549406775535855489345688, 3.01464677831036009769022629561, 4.28430354580104729973503262554, 5.87706382077652038011646073457, 6.09230369089135261145654767301, 7.33489609802139204072823477900, 8.715117541148683485467210163993, 10.01117563979775456203459955483, 10.89741843927464523439439492620, 11.69912600178178114351582622306