Properties

Label 16-147e8-1.1-c7e8-0-1
Degree $16$
Conductor $2.180\times 10^{17}$
Sign $1$
Analytic cond. $1.97724\times 10^{13}$
Root an. cond. $6.77647$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15·2-s − 108·3-s + 150·4-s − 504·5-s − 1.62e3·6-s + 975·8-s + 4.37e3·9-s − 7.56e3·10-s + 1.92e3·11-s − 1.62e4·12-s + 3.62e4·13-s + 5.44e4·15-s + 5.63e3·16-s + 1.95e4·17-s + 6.56e4·18-s − 3.13e4·19-s − 7.56e4·20-s + 2.88e4·22-s − 1.01e5·23-s − 1.05e5·24-s + 2.45e5·25-s + 5.44e5·26-s + 3.89e5·29-s + 8.16e5·30-s − 7.88e4·31-s + 1.19e5·32-s − 2.07e5·33-s + ⋯
L(s)  = 1  + 1.32·2-s − 2.30·3-s + 1.17·4-s − 1.80·5-s − 3.06·6-s + 0.673·8-s + 2·9-s − 2.39·10-s + 0.434·11-s − 2.70·12-s + 4.58·13-s + 4.16·15-s + 0.343·16-s + 0.966·17-s + 2.65·18-s − 1.04·19-s − 2.11·20-s + 0.576·22-s − 1.73·23-s − 1.55·24-s + 3.14·25-s + 6.07·26-s + 2.96·29-s + 5.52·30-s − 0.475·31-s + 0.646·32-s − 1.00·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{8} \cdot 7^{16}\)
Sign: $1$
Analytic conductor: \(1.97724\times 10^{13}\)
Root analytic conductor: \(6.77647\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{8} \cdot 7^{16} ,\ ( \ : [7/2]^{8} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(0.7612539810\)
\(L(\frac12)\) \(\approx\) \(0.7612539810\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 + p^{3} T + p^{6} T^{2} )^{4} \)
7 \( 1 \)
good2 \( 1 - 15 T + 75 T^{2} + 75 p T^{3} - 1127 p^{2} T^{4} - 495 p^{7} T^{5} + 84375 p^{5} T^{6} - 129105 p^{8} T^{7} + 794793 p^{8} T^{8} - 129105 p^{15} T^{9} + 84375 p^{19} T^{10} - 495 p^{28} T^{11} - 1127 p^{30} T^{12} + 75 p^{36} T^{13} + 75 p^{42} T^{14} - 15 p^{49} T^{15} + p^{56} T^{16} \)
5 \( 1 + 504 T + 8152 T^{2} - 40445424 T^{3} - 4617639614 T^{4} + 557714358072 p T^{5} + 28195826245408 p^{2} T^{6} - 1736252096189688 p^{3} T^{7} - 211783543053184349 p^{4} T^{8} - 1736252096189688 p^{10} T^{9} + 28195826245408 p^{16} T^{10} + 557714358072 p^{22} T^{11} - 4617639614 p^{28} T^{12} - 40445424 p^{35} T^{13} + 8152 p^{42} T^{14} + 504 p^{49} T^{15} + p^{56} T^{16} \)
11 \( 1 - 1920 T - 43617504 T^{2} + 250306451040 T^{3} + 851974453842130 T^{4} - 7328729425220879760 T^{5} + \)\(85\!\cdots\!84\)\( T^{6} + \)\(85\!\cdots\!20\)\( T^{7} - \)\(38\!\cdots\!41\)\( T^{8} + \)\(85\!\cdots\!20\)\( p^{7} T^{9} + \)\(85\!\cdots\!84\)\( p^{14} T^{10} - 7328729425220879760 p^{21} T^{11} + 851974453842130 p^{28} T^{12} + 250306451040 p^{35} T^{13} - 43617504 p^{42} T^{14} - 1920 p^{49} T^{15} + p^{56} T^{16} \)
13 \( ( 1 - 18144 T + 274398964 T^{2} - 180541542816 p T^{3} + 21711173630808534 T^{4} - 180541542816 p^{8} T^{5} + 274398964 p^{14} T^{6} - 18144 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
17 \( 1 - 1152 p T - 606984152 T^{2} + 21277920917088 T^{3} + 23895638307807058 T^{4} - \)\(65\!\cdots\!32\)\( T^{5} + \)\(30\!\cdots\!16\)\( T^{6} + \)\(54\!\cdots\!44\)\( T^{7} + \)\(21\!\cdots\!03\)\( T^{8} + \)\(54\!\cdots\!44\)\( p^{7} T^{9} + \)\(30\!\cdots\!16\)\( p^{14} T^{10} - \)\(65\!\cdots\!32\)\( p^{21} T^{11} + 23895638307807058 p^{28} T^{12} + 21277920917088 p^{35} T^{13} - 606984152 p^{42} T^{14} - 1152 p^{50} T^{15} + p^{56} T^{16} \)
19 \( 1 + 31320 T - 1195603708 T^{2} - 75817594337040 T^{3} + 44627959461466 T^{4} + \)\(65\!\cdots\!80\)\( T^{5} + \)\(12\!\cdots\!52\)\( T^{6} - \)\(12\!\cdots\!40\)\( p T^{7} - \)\(14\!\cdots\!81\)\( T^{8} - \)\(12\!\cdots\!40\)\( p^{8} T^{9} + \)\(12\!\cdots\!52\)\( p^{14} T^{10} + \)\(65\!\cdots\!80\)\( p^{21} T^{11} + 44627959461466 p^{28} T^{12} - 75817594337040 p^{35} T^{13} - 1195603708 p^{42} T^{14} + 31320 p^{49} T^{15} + p^{56} T^{16} \)
23 \( 1 + 101160 T - 4708078416 T^{2} - 386150051343600 T^{3} + 49684725721742722114 T^{4} + \)\(74\!\cdots\!00\)\( p T^{5} - \)\(23\!\cdots\!84\)\( T^{6} - \)\(14\!\cdots\!40\)\( T^{7} + \)\(10\!\cdots\!79\)\( T^{8} - \)\(14\!\cdots\!40\)\( p^{7} T^{9} - \)\(23\!\cdots\!84\)\( p^{14} T^{10} + \)\(74\!\cdots\!00\)\( p^{22} T^{11} + 49684725721742722114 p^{28} T^{12} - 386150051343600 p^{35} T^{13} - 4708078416 p^{42} T^{14} + 101160 p^{49} T^{15} + p^{56} T^{16} \)
29 \( ( 1 - 194832 T + 68169175020 T^{2} - 9181092556616112 T^{3} + \)\(17\!\cdots\!94\)\( T^{4} - 9181092556616112 p^{7} T^{5} + 68169175020 p^{14} T^{6} - 194832 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
31 \( 1 + 78840 T - 16183724812 T^{2} - 10658302272654480 T^{3} - \)\(10\!\cdots\!34\)\( T^{4} + \)\(14\!\cdots\!00\)\( T^{5} + \)\(34\!\cdots\!68\)\( T^{6} + \)\(20\!\cdots\!40\)\( T^{7} - \)\(59\!\cdots\!81\)\( T^{8} + \)\(20\!\cdots\!40\)\( p^{7} T^{9} + \)\(34\!\cdots\!68\)\( p^{14} T^{10} + \)\(14\!\cdots\!00\)\( p^{21} T^{11} - \)\(10\!\cdots\!34\)\( p^{28} T^{12} - 10658302272654480 p^{35} T^{13} - 16183724812 p^{42} T^{14} + 78840 p^{49} T^{15} + p^{56} T^{16} \)
37 \( 1 + 128640 T - 259896387244 T^{2} - 10652201423243520 T^{3} + \)\(39\!\cdots\!14\)\( T^{4} - \)\(20\!\cdots\!80\)\( T^{5} - \)\(42\!\cdots\!36\)\( T^{6} + \)\(72\!\cdots\!40\)\( T^{7} + \)\(37\!\cdots\!59\)\( T^{8} + \)\(72\!\cdots\!40\)\( p^{7} T^{9} - \)\(42\!\cdots\!36\)\( p^{14} T^{10} - \)\(20\!\cdots\!80\)\( p^{21} T^{11} + \)\(39\!\cdots\!14\)\( p^{28} T^{12} - 10652201423243520 p^{35} T^{13} - 259896387244 p^{42} T^{14} + 128640 p^{49} T^{15} + p^{56} T^{16} \)
41 \( ( 1 - 365040 T + 391725770744 T^{2} - 146719702189581120 T^{3} + \)\(84\!\cdots\!06\)\( T^{4} - 146719702189581120 p^{7} T^{5} + 391725770744 p^{14} T^{6} - 365040 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
43 \( ( 1 - 449520 T + 911801001196 T^{2} - 338923246405434480 T^{3} + \)\(35\!\cdots\!42\)\( T^{4} - 338923246405434480 p^{7} T^{5} + 911801001196 p^{14} T^{6} - 449520 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
47 \( 1 - 1575792 T + 306134096068 T^{2} + 691098568700217120 T^{3} - \)\(22\!\cdots\!30\)\( T^{4} - \)\(12\!\cdots\!48\)\( T^{5} - \)\(17\!\cdots\!56\)\( T^{6} - \)\(77\!\cdots\!40\)\( T^{7} + \)\(15\!\cdots\!79\)\( T^{8} - \)\(77\!\cdots\!40\)\( p^{7} T^{9} - \)\(17\!\cdots\!56\)\( p^{14} T^{10} - \)\(12\!\cdots\!48\)\( p^{21} T^{11} - \)\(22\!\cdots\!30\)\( p^{28} T^{12} + 691098568700217120 p^{35} T^{13} + 306134096068 p^{42} T^{14} - 1575792 p^{49} T^{15} + p^{56} T^{16} \)
53 \( 1 - 1448160 T - 217257586860 T^{2} + 372567057484827840 T^{3} + \)\(52\!\cdots\!62\)\( T^{4} - \)\(30\!\cdots\!80\)\( T^{5} + \)\(17\!\cdots\!00\)\( T^{6} - \)\(15\!\cdots\!80\)\( p T^{7} - \)\(70\!\cdots\!13\)\( p^{2} T^{8} - \)\(15\!\cdots\!80\)\( p^{8} T^{9} + \)\(17\!\cdots\!00\)\( p^{14} T^{10} - \)\(30\!\cdots\!80\)\( p^{21} T^{11} + \)\(52\!\cdots\!62\)\( p^{28} T^{12} + 372567057484827840 p^{35} T^{13} - 217257586860 p^{42} T^{14} - 1448160 p^{49} T^{15} + p^{56} T^{16} \)
59 \( 1 + 3280320 T + 4401496666132 T^{2} + 6335039987350911360 T^{3} + \)\(62\!\cdots\!06\)\( T^{4} - \)\(36\!\cdots\!20\)\( T^{5} + \)\(63\!\cdots\!72\)\( T^{6} + \)\(25\!\cdots\!40\)\( T^{7} + \)\(18\!\cdots\!39\)\( T^{8} + \)\(25\!\cdots\!40\)\( p^{7} T^{9} + \)\(63\!\cdots\!72\)\( p^{14} T^{10} - \)\(36\!\cdots\!20\)\( p^{21} T^{11} + \)\(62\!\cdots\!06\)\( p^{28} T^{12} + 6335039987350911360 p^{35} T^{13} + 4401496666132 p^{42} T^{14} + 3280320 p^{49} T^{15} + p^{56} T^{16} \)
61 \( 1 + 606960 T - 5638071288196 T^{2} + 432857490606283680 T^{3} + \)\(14\!\cdots\!30\)\( T^{4} - \)\(10\!\cdots\!40\)\( T^{5} - \)\(48\!\cdots\!84\)\( T^{6} + \)\(27\!\cdots\!80\)\( T^{7} - \)\(19\!\cdots\!41\)\( T^{8} + \)\(27\!\cdots\!80\)\( p^{7} T^{9} - \)\(48\!\cdots\!84\)\( p^{14} T^{10} - \)\(10\!\cdots\!40\)\( p^{21} T^{11} + \)\(14\!\cdots\!30\)\( p^{28} T^{12} + 432857490606283680 p^{35} T^{13} - 5638071288196 p^{42} T^{14} + 606960 p^{49} T^{15} + p^{56} T^{16} \)
67 \( 1 + 3492880 T - 4053064665564 T^{2} - 32954975534844335200 T^{3} - \)\(45\!\cdots\!46\)\( T^{4} - \)\(64\!\cdots\!00\)\( T^{5} - \)\(22\!\cdots\!76\)\( T^{6} + \)\(86\!\cdots\!20\)\( T^{7} + \)\(54\!\cdots\!39\)\( T^{8} + \)\(86\!\cdots\!20\)\( p^{7} T^{9} - \)\(22\!\cdots\!76\)\( p^{14} T^{10} - \)\(64\!\cdots\!00\)\( p^{21} T^{11} - \)\(45\!\cdots\!46\)\( p^{28} T^{12} - 32954975534844335200 p^{35} T^{13} - 4053064665564 p^{42} T^{14} + 3492880 p^{49} T^{15} + p^{56} T^{16} \)
71 \( ( 1 - 984 T + 23313454396080 T^{2} - 10877264513013635016 T^{3} + \)\(26\!\cdots\!74\)\( T^{4} - 10877264513013635016 p^{7} T^{5} + 23313454396080 p^{14} T^{6} - 984 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
73 \( 1 + 10981440 T + 52184200249292 T^{2} + 91864376880944423040 T^{3} - \)\(18\!\cdots\!70\)\( T^{4} - \)\(11\!\cdots\!20\)\( T^{5} + \)\(64\!\cdots\!72\)\( T^{6} + \)\(26\!\cdots\!60\)\( p T^{7} + \)\(94\!\cdots\!99\)\( T^{8} + \)\(26\!\cdots\!60\)\( p^{8} T^{9} + \)\(64\!\cdots\!72\)\( p^{14} T^{10} - \)\(11\!\cdots\!20\)\( p^{21} T^{11} - \)\(18\!\cdots\!70\)\( p^{28} T^{12} + 91864376880944423040 p^{35} T^{13} + 52184200249292 p^{42} T^{14} + 10981440 p^{49} T^{15} + p^{56} T^{16} \)
79 \( 1 + 4654544 T - 28361900310156 T^{2} - \)\(16\!\cdots\!96\)\( T^{3} + \)\(42\!\cdots\!06\)\( T^{4} + \)\(28\!\cdots\!52\)\( T^{5} + \)\(33\!\cdots\!96\)\( T^{6} - \)\(32\!\cdots\!88\)\( T^{7} - \)\(16\!\cdots\!13\)\( T^{8} - \)\(32\!\cdots\!88\)\( p^{7} T^{9} + \)\(33\!\cdots\!96\)\( p^{14} T^{10} + \)\(28\!\cdots\!52\)\( p^{21} T^{11} + \)\(42\!\cdots\!06\)\( p^{28} T^{12} - \)\(16\!\cdots\!96\)\( p^{35} T^{13} - 28361900310156 p^{42} T^{14} + 4654544 p^{49} T^{15} + p^{56} T^{16} \)
83 \( ( 1 - 8126496 T + 100452515205644 T^{2} - \)\(57\!\cdots\!12\)\( T^{3} + \)\(40\!\cdots\!74\)\( T^{4} - \)\(57\!\cdots\!12\)\( p^{7} T^{5} + 100452515205644 p^{14} T^{6} - 8126496 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
89 \( 1 - 11272320 T + 60652848406216 T^{2} - \)\(95\!\cdots\!80\)\( T^{3} + \)\(76\!\cdots\!50\)\( T^{4} - \)\(36\!\cdots\!60\)\( T^{5} + \)\(46\!\cdots\!84\)\( T^{6} - \)\(32\!\cdots\!60\)\( T^{7} + \)\(13\!\cdots\!59\)\( T^{8} - \)\(32\!\cdots\!60\)\( p^{7} T^{9} + \)\(46\!\cdots\!84\)\( p^{14} T^{10} - \)\(36\!\cdots\!60\)\( p^{21} T^{11} + \)\(76\!\cdots\!50\)\( p^{28} T^{12} - \)\(95\!\cdots\!80\)\( p^{35} T^{13} + 60652848406216 p^{42} T^{14} - 11272320 p^{49} T^{15} + p^{56} T^{16} \)
97 \( ( 1 - 6572448 T + 235163205768916 T^{2} - \)\(14\!\cdots\!84\)\( T^{3} + \)\(26\!\cdots\!14\)\( T^{4} - \)\(14\!\cdots\!84\)\( p^{7} T^{5} + 235163205768916 p^{14} T^{6} - 6572448 p^{21} T^{7} + p^{28} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.41852420961095087200008853935, −4.36496173635525434787727685211, −4.34951516730648503494869603041, −4.28430354580104729973503262554, −3.74893711809114633918503906496, −3.71477900098064444757032531323, −3.70759187947794039587030055259, −3.56011387611497406119922586134, −3.30697009858515842234474833342, −3.25572884094153473883629733115, −3.01464677831036009769022629561, −2.52247107699978731449253638756, −2.49196067599503610818291753363, −2.48583615380552137908197188421, −2.32997580228663982321653467067, −1.72372403479761316494863089348, −1.52973337534301434627614944702, −1.35619670645607308027649283627, −1.04912685453215505068028790205, −1.02598910390899609476080311948, −0.998571549406775535855489345688, −0.935336161176410135619719004504, −0.46903833264959969224262404179, −0.36075800282848570390308241618, −0.05725028538328262131754424993, 0.05725028538328262131754424993, 0.36075800282848570390308241618, 0.46903833264959969224262404179, 0.935336161176410135619719004504, 0.998571549406775535855489345688, 1.02598910390899609476080311948, 1.04912685453215505068028790205, 1.35619670645607308027649283627, 1.52973337534301434627614944702, 1.72372403479761316494863089348, 2.32997580228663982321653467067, 2.48583615380552137908197188421, 2.49196067599503610818291753363, 2.52247107699978731449253638756, 3.01464677831036009769022629561, 3.25572884094153473883629733115, 3.30697009858515842234474833342, 3.56011387611497406119922586134, 3.70759187947794039587030055259, 3.71477900098064444757032531323, 3.74893711809114633918503906496, 4.28430354580104729973503262554, 4.34951516730648503494869603041, 4.36496173635525434787727685211, 4.41852420961095087200008853935

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.