| L(s) = 1 | − 7.39i·2-s + (−33.2 − 32.9i)3-s + 73.2·4-s + 203.·5-s + (−243. + 245. i)6-s − 1.48e3i·8-s + (21.5 + 2.18e3i)9-s − 1.50e3i·10-s − 1.94e3i·11-s + (−2.43e3 − 2.41e3i)12-s + 7.87e3i·13-s + (−6.74e3 − 6.68e3i)15-s − 1.63e3·16-s − 9.23e3·17-s + (1.61e4 − 159. i)18-s − 1.04e4i·19-s + ⋯ |
| L(s) = 1 | − 0.653i·2-s + (−0.710 − 0.703i)3-s + 0.572·4-s + 0.726·5-s + (−0.460 + 0.464i)6-s − 1.02i·8-s + (0.00986 + 0.999i)9-s − 0.475i·10-s − 0.440i·11-s + (−0.406 − 0.402i)12-s + 0.994i·13-s + (−0.516 − 0.511i)15-s − 0.0999·16-s − 0.455·17-s + (0.653 − 0.00645i)18-s − 0.348i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0666i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0666i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(4)\) |
\(\approx\) |
\(1.555678900\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.555678900\) |
| \(L(\frac{9}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (33.2 + 32.9i)T \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + 7.39iT - 128T^{2} \) |
| 5 | \( 1 - 203.T + 7.81e4T^{2} \) |
| 11 | \( 1 + 1.94e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 - 7.87e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 9.23e3T + 4.10e8T^{2} \) |
| 19 | \( 1 + 1.04e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 8.18e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 + 1.95e5iT - 1.72e10T^{2} \) |
| 31 | \( 1 + 9.74e4iT - 2.75e10T^{2} \) |
| 37 | \( 1 - 5.70e5T + 9.49e10T^{2} \) |
| 41 | \( 1 + 3.39e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 3.56e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 7.66e5T + 5.06e11T^{2} \) |
| 53 | \( 1 + 1.58e5iT - 1.17e12T^{2} \) |
| 59 | \( 1 + 2.56e6T + 2.48e12T^{2} \) |
| 61 | \( 1 - 1.72e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 + 2.20e6T + 6.06e12T^{2} \) |
| 71 | \( 1 + 5.29e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 - 2.54e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 - 7.44e5T + 1.92e13T^{2} \) |
| 83 | \( 1 - 5.20e6T + 2.71e13T^{2} \) |
| 89 | \( 1 - 1.01e7T + 4.42e13T^{2} \) |
| 97 | \( 1 - 3.36e6iT - 8.07e13T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37840253053515069482366412049, −10.46985003162021574676133009354, −9.435658204813824386725276526129, −7.893712821588852774403697603507, −6.56487174500398403159856142100, −6.10558131203793125732906572625, −4.45033446846128754104054627677, −2.55861907589376627319709015675, −1.73128854476963428880822562774, −0.42845493558047665021136998899,
1.55926599931668315303529556875, 3.20966830282667307277216975522, 4.97789078154767149933358270724, 5.76904478283742403993682422388, 6.66871001875231588583566824295, 7.87729843875258088487310779300, 9.310317677458364867475533395583, 10.26201300856924356769278367481, 11.10541521211852083306252521172, 12.08913956691795485602046380427