Properties

Label 16-147e8-1.1-c6e8-0-3
Degree $16$
Conductor $2.180\times 10^{17}$
Sign $1$
Analytic cond. $1.71071\times 10^{12}$
Root an. cond. $5.81532$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·2-s − 108·3-s + 54·4-s + 42·5-s + 540·6-s − 593·8-s + 6.31e3·9-s − 210·10-s − 1.07e3·11-s − 5.83e3·12-s − 4.53e3·15-s + 6.97e3·16-s − 7.21e3·17-s − 3.15e4·18-s + 2.46e4·19-s + 2.26e3·20-s + 5.35e3·22-s − 1.52e4·23-s + 6.40e4·24-s − 1.92e4·25-s − 2.62e5·27-s + 3.25e4·29-s + 2.26e4·30-s − 4.02e4·31-s − 3.24e4·32-s + 1.15e5·33-s + 3.60e4·34-s + ⋯
L(s)  = 1  − 5/8·2-s − 4·3-s + 0.843·4-s + 0.335·5-s + 5/2·6-s − 1.15·8-s + 26/3·9-s − 0.209·10-s − 0.803·11-s − 3.37·12-s − 1.34·15-s + 1.70·16-s − 1.46·17-s − 5.41·18-s + 3.58·19-s + 0.283·20-s + 0.502·22-s − 1.25·23-s + 4.63·24-s − 1.23·25-s − 13.3·27-s + 1.33·29-s + 0.839·30-s − 1.34·31-s − 0.991·32-s + 3.21·33-s + 0.917·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(7-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+3)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(3^{8} \cdot 7^{16}\)
Sign: $1$
Analytic conductor: \(1.71071\times 10^{12}\)
Root analytic conductor: \(5.81532\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 3^{8} \cdot 7^{16} ,\ ( \ : [3]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.5749517820\)
\(L(\frac12)\) \(\approx\) \(0.5749517820\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( ( 1 + p^{3} T + p^{5} T^{2} )^{4} \)
7 \( 1 \)
good2 \( 1 + 5 T - 29 T^{2} + 89 p T^{3} - 777 p T^{4} - 9243 p^{2} T^{5} + 50201 p^{2} T^{6} + 71679 p^{5} T^{7} + 17 p^{17} T^{8} + 71679 p^{11} T^{9} + 50201 p^{14} T^{10} - 9243 p^{20} T^{11} - 777 p^{25} T^{12} + 89 p^{31} T^{13} - 29 p^{36} T^{14} + 5 p^{42} T^{15} + p^{48} T^{16} \)
5 \( 1 - 42 T + 4199 p T^{2} - 857094 T^{3} + 59255749 T^{4} - 71357004 p^{3} T^{5} - 55623489398 p^{2} T^{6} - 110556133392 p^{5} T^{7} - 1151873646254 p^{4} T^{8} - 110556133392 p^{11} T^{9} - 55623489398 p^{14} T^{10} - 71357004 p^{21} T^{11} + 59255749 p^{24} T^{12} - 857094 p^{30} T^{13} + 4199 p^{37} T^{14} - 42 p^{42} T^{15} + p^{48} T^{16} \)
11 \( 1 + 1070 T - 516103 p T^{2} - 3448075790 T^{3} + 22836612400425 T^{4} + 7759923983215740 T^{5} - 60967102988727183826 T^{6} - \)\(45\!\cdots\!20\)\( T^{7} + \)\(12\!\cdots\!86\)\( T^{8} - \)\(45\!\cdots\!20\)\( p^{6} T^{9} - 60967102988727183826 p^{12} T^{10} + 7759923983215740 p^{18} T^{11} + 22836612400425 p^{24} T^{12} - 3448075790 p^{30} T^{13} - 516103 p^{37} T^{14} + 1070 p^{42} T^{15} + p^{48} T^{16} \)
13 \( 1 - 16298786 T^{2} + 111852524426401 T^{4} - 37539779661680550026 p T^{6} + \)\(20\!\cdots\!88\)\( T^{8} - 37539779661680550026 p^{13} T^{10} + 111852524426401 p^{24} T^{12} - 16298786 p^{36} T^{14} + p^{48} T^{16} \)
17 \( 1 + 7212 T + 37951384 T^{2} + 148666264032 T^{3} - 401372098722782 T^{4} - 760743811350012996 T^{5} + \)\(67\!\cdots\!80\)\( T^{6} + \)\(10\!\cdots\!52\)\( T^{7} + \)\(11\!\cdots\!47\)\( T^{8} + \)\(10\!\cdots\!52\)\( p^{6} T^{9} + \)\(67\!\cdots\!80\)\( p^{12} T^{10} - 760743811350012996 p^{18} T^{11} - 401372098722782 p^{24} T^{12} + 148666264032 p^{30} T^{13} + 37951384 p^{36} T^{14} + 7212 p^{42} T^{15} + p^{48} T^{16} \)
19 \( 1 - 24606 T + 362733151 T^{2} - 3959468067834 T^{3} + 36560849427203149 T^{4} - \)\(28\!\cdots\!40\)\( T^{5} + \)\(19\!\cdots\!30\)\( T^{6} - \)\(12\!\cdots\!40\)\( T^{7} + \)\(82\!\cdots\!38\)\( T^{8} - \)\(12\!\cdots\!40\)\( p^{6} T^{9} + \)\(19\!\cdots\!30\)\( p^{12} T^{10} - \)\(28\!\cdots\!40\)\( p^{18} T^{11} + 36560849427203149 p^{24} T^{12} - 3959468067834 p^{30} T^{13} + 362733151 p^{36} T^{14} - 24606 p^{42} T^{15} + p^{48} T^{16} \)
23 \( 1 + 15224 T - 71404700 T^{2} - 3251082330032 T^{3} - 39028069690313382 T^{4} - \)\(38\!\cdots\!08\)\( T^{5} - \)\(16\!\cdots\!68\)\( T^{6} + \)\(76\!\cdots\!84\)\( T^{7} + \)\(17\!\cdots\!71\)\( T^{8} + \)\(76\!\cdots\!84\)\( p^{6} T^{9} - \)\(16\!\cdots\!68\)\( p^{12} T^{10} - \)\(38\!\cdots\!08\)\( p^{18} T^{11} - 39028069690313382 p^{24} T^{12} - 3251082330032 p^{30} T^{13} - 71404700 p^{36} T^{14} + 15224 p^{42} T^{15} + p^{48} T^{16} \)
29 \( ( 1 - 16262 T + 1936712745 T^{2} - 19588912728706 T^{3} + 1557131395176891808 T^{4} - 19588912728706 p^{6} T^{5} + 1936712745 p^{12} T^{6} - 16262 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
31 \( 1 + 40200 T + 2343974770 T^{2} + 72572849754000 T^{3} + 2084077897304297293 T^{4} + \)\(75\!\cdots\!20\)\( T^{5} + \)\(25\!\cdots\!50\)\( T^{6} + \)\(10\!\cdots\!60\)\( T^{7} + \)\(32\!\cdots\!28\)\( T^{8} + \)\(10\!\cdots\!60\)\( p^{6} T^{9} + \)\(25\!\cdots\!50\)\( p^{12} T^{10} + \)\(75\!\cdots\!20\)\( p^{18} T^{11} + 2084077897304297293 p^{24} T^{12} + 72572849754000 p^{30} T^{13} + 2343974770 p^{36} T^{14} + 40200 p^{42} T^{15} + p^{48} T^{16} \)
37 \( 1 + 45670 T - 5087844981 T^{2} - 327542380882710 T^{3} + 12351146188805096265 T^{4} + \)\(98\!\cdots\!60\)\( T^{5} - \)\(98\!\cdots\!54\)\( T^{6} - \)\(12\!\cdots\!80\)\( T^{7} - \)\(38\!\cdots\!86\)\( T^{8} - \)\(12\!\cdots\!80\)\( p^{6} T^{9} - \)\(98\!\cdots\!54\)\( p^{12} T^{10} + \)\(98\!\cdots\!60\)\( p^{18} T^{11} + 12351146188805096265 p^{24} T^{12} - 327542380882710 p^{30} T^{13} - 5087844981 p^{36} T^{14} + 45670 p^{42} T^{15} + p^{48} T^{16} \)
41 \( 1 - 26005847576 T^{2} + \)\(34\!\cdots\!60\)\( T^{4} - \)\(28\!\cdots\!64\)\( T^{6} + \)\(15\!\cdots\!14\)\( T^{8} - \)\(28\!\cdots\!64\)\( p^{12} T^{10} + \)\(34\!\cdots\!60\)\( p^{24} T^{12} - 26005847576 p^{36} T^{14} + p^{48} T^{16} \)
43 \( ( 1 + 222830 T + 23708395369 T^{2} + 1380667882433470 T^{3} + 73296626267097035876 T^{4} + 1380667882433470 p^{6} T^{5} + 23708395369 p^{12} T^{6} + 222830 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
47 \( 1 + 82884 T + 33030950488 T^{2} + 2547939641253024 T^{3} + \)\(61\!\cdots\!34\)\( T^{4} + \)\(67\!\cdots\!36\)\( T^{5} + \)\(88\!\cdots\!56\)\( T^{6} + \)\(10\!\cdots\!28\)\( T^{7} + \)\(95\!\cdots\!35\)\( T^{8} + \)\(10\!\cdots\!28\)\( p^{6} T^{9} + \)\(88\!\cdots\!56\)\( p^{12} T^{10} + \)\(67\!\cdots\!36\)\( p^{18} T^{11} + \)\(61\!\cdots\!34\)\( p^{24} T^{12} + 2547939641253024 p^{30} T^{13} + 33030950488 p^{36} T^{14} + 82884 p^{42} T^{15} + p^{48} T^{16} \)
53 \( 1 + 13034 T - 37911011717 T^{2} + 368806876088782 T^{3} + \)\(25\!\cdots\!77\)\( T^{4} - \)\(27\!\cdots\!36\)\( T^{5} - \)\(79\!\cdots\!10\)\( T^{6} + \)\(35\!\cdots\!88\)\( T^{7} + \)\(46\!\cdots\!02\)\( T^{8} + \)\(35\!\cdots\!88\)\( p^{6} T^{9} - \)\(79\!\cdots\!10\)\( p^{12} T^{10} - \)\(27\!\cdots\!36\)\( p^{18} T^{11} + \)\(25\!\cdots\!77\)\( p^{24} T^{12} + 368806876088782 p^{30} T^{13} - 37911011717 p^{36} T^{14} + 13034 p^{42} T^{15} + p^{48} T^{16} \)
59 \( 1 + 1810362 T + 1656169621891 T^{2} + 1020500030287048566 T^{3} + \)\(47\!\cdots\!61\)\( T^{4} + \)\(17\!\cdots\!16\)\( T^{5} + \)\(54\!\cdots\!70\)\( T^{6} + \)\(14\!\cdots\!12\)\( T^{7} + \)\(31\!\cdots\!62\)\( T^{8} + \)\(14\!\cdots\!12\)\( p^{6} T^{9} + \)\(54\!\cdots\!70\)\( p^{12} T^{10} + \)\(17\!\cdots\!16\)\( p^{18} T^{11} + \)\(47\!\cdots\!61\)\( p^{24} T^{12} + 1020500030287048566 p^{30} T^{13} + 1656169621891 p^{36} T^{14} + 1810362 p^{42} T^{15} + p^{48} T^{16} \)
61 \( 1 - 392856 T + 253766894356 T^{2} - 79483260556868064 T^{3} + \)\(32\!\cdots\!58\)\( T^{4} - \)\(85\!\cdots\!52\)\( T^{5} + \)\(27\!\cdots\!00\)\( T^{6} - \)\(61\!\cdots\!24\)\( T^{7} + \)\(16\!\cdots\!47\)\( T^{8} - \)\(61\!\cdots\!24\)\( p^{6} T^{9} + \)\(27\!\cdots\!00\)\( p^{12} T^{10} - \)\(85\!\cdots\!52\)\( p^{18} T^{11} + \)\(32\!\cdots\!58\)\( p^{24} T^{12} - 79483260556868064 p^{30} T^{13} + 253766894356 p^{36} T^{14} - 392856 p^{42} T^{15} + p^{48} T^{16} \)
67 \( 1 - 384094 T - 169408100025 T^{2} + 57304941612054286 T^{3} + \)\(24\!\cdots\!05\)\( T^{4} - \)\(42\!\cdots\!12\)\( T^{5} - \)\(32\!\cdots\!54\)\( T^{6} + \)\(98\!\cdots\!00\)\( T^{7} + \)\(36\!\cdots\!22\)\( T^{8} + \)\(98\!\cdots\!00\)\( p^{6} T^{9} - \)\(32\!\cdots\!54\)\( p^{12} T^{10} - \)\(42\!\cdots\!12\)\( p^{18} T^{11} + \)\(24\!\cdots\!05\)\( p^{24} T^{12} + 57304941612054286 p^{30} T^{13} - 169408100025 p^{36} T^{14} - 384094 p^{42} T^{15} + p^{48} T^{16} \)
71 \( ( 1 - 112844 T + 324448495296 T^{2} + 1073384954931548 T^{3} + \)\(47\!\cdots\!38\)\( T^{4} + 1073384954931548 p^{6} T^{5} + 324448495296 p^{12} T^{6} - 112844 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
73 \( 1 + 903078 T + 897300437755 T^{2} + 564830568330899706 T^{3} + \)\(36\!\cdots\!49\)\( T^{4} + \)\(18\!\cdots\!76\)\( T^{5} + \)\(93\!\cdots\!70\)\( T^{6} + \)\(39\!\cdots\!56\)\( T^{7} + \)\(16\!\cdots\!62\)\( T^{8} + \)\(39\!\cdots\!56\)\( p^{6} T^{9} + \)\(93\!\cdots\!70\)\( p^{12} T^{10} + \)\(18\!\cdots\!76\)\( p^{18} T^{11} + \)\(36\!\cdots\!49\)\( p^{24} T^{12} + 564830568330899706 p^{30} T^{13} + 897300437755 p^{36} T^{14} + 903078 p^{42} T^{15} + p^{48} T^{16} \)
79 \( 1 + 559592 T - 192861426366 T^{2} - 38884411164730496 T^{3} + \)\(45\!\cdots\!81\)\( T^{4} - \)\(13\!\cdots\!84\)\( T^{5} + \)\(30\!\cdots\!58\)\( T^{6} + \)\(45\!\cdots\!96\)\( T^{7} - \)\(14\!\cdots\!88\)\( T^{8} + \)\(45\!\cdots\!96\)\( p^{6} T^{9} + \)\(30\!\cdots\!58\)\( p^{12} T^{10} - \)\(13\!\cdots\!84\)\( p^{18} T^{11} + \)\(45\!\cdots\!81\)\( p^{24} T^{12} - 38884411164730496 p^{30} T^{13} - 192861426366 p^{36} T^{14} + 559592 p^{42} T^{15} + p^{48} T^{16} \)
83 \( 1 - 577456669706 T^{2} + \)\(27\!\cdots\!89\)\( T^{4} - \)\(12\!\cdots\!18\)\( T^{6} + \)\(42\!\cdots\!16\)\( T^{8} - \)\(12\!\cdots\!18\)\( p^{12} T^{10} + \)\(27\!\cdots\!89\)\( p^{24} T^{12} - 577456669706 p^{36} T^{14} + p^{48} T^{16} \)
89 \( 1 - 1770036 T + 3412957024480 T^{2} - 4192533013088545728 T^{3} + \)\(53\!\cdots\!74\)\( T^{4} - \)\(51\!\cdots\!96\)\( T^{5} + \)\(49\!\cdots\!64\)\( T^{6} - \)\(38\!\cdots\!04\)\( T^{7} + \)\(30\!\cdots\!35\)\( T^{8} - \)\(38\!\cdots\!04\)\( p^{6} T^{9} + \)\(49\!\cdots\!64\)\( p^{12} T^{10} - \)\(51\!\cdots\!96\)\( p^{18} T^{11} + \)\(53\!\cdots\!74\)\( p^{24} T^{12} - 4192533013088545728 p^{30} T^{13} + 3412957024480 p^{36} T^{14} - 1770036 p^{42} T^{15} + p^{48} T^{16} \)
97 \( 1 - 4315064900690 T^{2} + \)\(91\!\cdots\!41\)\( T^{4} - \)\(12\!\cdots\!58\)\( T^{6} + \)\(12\!\cdots\!60\)\( T^{8} - \)\(12\!\cdots\!58\)\( p^{12} T^{10} + \)\(91\!\cdots\!41\)\( p^{24} T^{12} - 4315064900690 p^{36} T^{14} + p^{48} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.89694826542435441375125652100, −4.73317129452206101877038560152, −4.55959959749671389882157872141, −4.31128505712049518903841859410, −4.26480057395925574136299287944, −4.24782319660920900322819209227, −3.65810348472996861308097978455, −3.33935511872075694349662514298, −3.30113759255934728066338987884, −3.21497055686409498416024634482, −3.03994015497324337692851002495, −2.95810999235717902687315655922, −2.89248258070465242086191437765, −2.02367135822062937674664547972, −1.84334088317644376309649117863, −1.84187715147097261076059135143, −1.79186203132370454970928035520, −1.61115997845326732574353243943, −1.53305366681238357444478499131, −0.923014931527965953673955345324, −0.897265493756241526355295301837, −0.64642817597606383459126205931, −0.32130604628070188230093502892, −0.30972774640889175760339065476, −0.23560527128413133065899137184, 0.23560527128413133065899137184, 0.30972774640889175760339065476, 0.32130604628070188230093502892, 0.64642817597606383459126205931, 0.897265493756241526355295301837, 0.923014931527965953673955345324, 1.53305366681238357444478499131, 1.61115997845326732574353243943, 1.79186203132370454970928035520, 1.84187715147097261076059135143, 1.84334088317644376309649117863, 2.02367135822062937674664547972, 2.89248258070465242086191437765, 2.95810999235717902687315655922, 3.03994015497324337692851002495, 3.21497055686409498416024634482, 3.30113759255934728066338987884, 3.33935511872075694349662514298, 3.65810348472996861308097978455, 4.24782319660920900322819209227, 4.26480057395925574136299287944, 4.31128505712049518903841859410, 4.55959959749671389882157872141, 4.73317129452206101877038560152, 4.89694826542435441375125652100

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.