Properties

Label 2-147-3.2-c4-0-34
Degree $2$
Conductor $147$
Sign $1$
Analytic cond. $15.1953$
Root an. cond. $3.89812$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 16·4-s + 81·9-s + 144·12-s + 191·13-s + 256·16-s − 601·19-s + 625·25-s + 729·27-s − 1.75e3·31-s + 1.29e3·36-s + 2.59e3·37-s + 1.71e3·39-s + 23·43-s + 2.30e3·48-s + 3.05e3·52-s − 5.40e3·57-s − 1.96e3·61-s + 4.09e3·64-s − 8.80e3·67-s − 1.24e3·73-s + 5.62e3·75-s − 9.61e3·76-s − 1.23e4·79-s + 6.56e3·81-s − 1.57e4·93-s − 1.88e4·97-s + ⋯
L(s)  = 1  + 3-s + 4-s + 9-s + 12-s + 1.13·13-s + 16-s − 1.66·19-s + 25-s + 27-s − 1.82·31-s + 36-s + 1.89·37-s + 1.13·39-s + 0.0124·43-s + 48-s + 1.13·52-s − 1.66·57-s − 0.528·61-s + 64-s − 1.96·67-s − 0.234·73-s + 75-s − 1.66·76-s − 1.98·79-s + 81-s − 1.82·93-s − 1.99·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(15.1953\)
Root analytic conductor: \(3.89812\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{147} (50, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(3.331662218\)
\(L(\frac12)\) \(\approx\) \(3.331662218\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p^{2} T \)
7 \( 1 \)
good2 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
5 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
11 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
13 \( 1 - 191 T + p^{4} T^{2} \)
17 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
19 \( 1 + 601 T + p^{4} T^{2} \)
23 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
29 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
31 \( 1 + 1753 T + p^{4} T^{2} \)
37 \( 1 - 2591 T + p^{4} T^{2} \)
41 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
43 \( 1 - 23 T + p^{4} T^{2} \)
47 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
53 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
59 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
61 \( 1 + 1966 T + p^{4} T^{2} \)
67 \( 1 + 8809 T + p^{4} T^{2} \)
71 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
73 \( 1 + 1249 T + p^{4} T^{2} \)
79 \( 1 + 12361 T + p^{4} T^{2} \)
83 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
89 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
97 \( 1 + 18814 T + p^{4} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58104607114060352997339651146, −11.15494702198054681404899311274, −10.46926812420951228722342111984, −9.095388278492241886155572876093, −8.179754775476964735111059709801, −7.09312330997744730265845564815, −6.05663936391500956845734084108, −4.11439103484865717582566679473, −2.83301770432692380350337036688, −1.56411795166496279058804682706, 1.56411795166496279058804682706, 2.83301770432692380350337036688, 4.11439103484865717582566679473, 6.05663936391500956845734084108, 7.09312330997744730265845564815, 8.179754775476964735111059709801, 9.095388278492241886155572876093, 10.46926812420951228722342111984, 11.15494702198054681404899311274, 12.58104607114060352997339651146

Graph of the $Z$-function along the critical line