Properties

Label 2-147-1.1-c15-0-80
Degree $2$
Conductor $147$
Sign $-1$
Analytic cond. $209.759$
Root an. cond. $14.4830$
Motivic weight $15$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 72·2-s − 2.18e3·3-s − 2.75e4·4-s + 2.21e5·5-s + 1.57e5·6-s + 4.34e6·8-s + 4.78e6·9-s − 1.59e7·10-s + 3.71e7·11-s + 6.03e7·12-s + 2.79e8·13-s − 4.84e8·15-s + 5.91e8·16-s − 2.49e9·17-s − 3.44e8·18-s + 4.66e9·19-s − 6.10e9·20-s − 2.67e9·22-s − 1.84e10·23-s − 9.50e9·24-s + 1.85e10·25-s − 2.01e10·26-s − 1.04e10·27-s − 1.15e11·29-s + 3.48e10·30-s + 5.61e10·31-s − 1.84e11·32-s + ⋯
L(s)  = 1  − 0.397·2-s − 0.577·3-s − 0.841·4-s + 1.26·5-s + 0.229·6-s + 0.732·8-s + 1/3·9-s − 0.504·10-s + 0.575·11-s + 0.486·12-s + 1.23·13-s − 0.732·15-s + 0.550·16-s − 1.47·17-s − 0.132·18-s + 1.19·19-s − 1.06·20-s − 0.228·22-s − 1.13·23-s − 0.422·24-s + 0.607·25-s − 0.492·26-s − 0.192·27-s − 1.24·29-s + 0.291·30-s + 0.366·31-s − 0.951·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(209.759\)
Root analytic conductor: \(14.4830\)
Motivic weight: \(15\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 147,\ (\ :15/2),\ -1)\)

Particular Values

\(L(8)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p^{7} T \)
7 \( 1 \)
good2 \( 1 + 9 p^{3} T + p^{15} T^{2} \)
5 \( 1 - 44298 p T + p^{15} T^{2} \)
11 \( 1 - 37169316 T + p^{15} T^{2} \)
13 \( 1 - 21536482 p T + p^{15} T^{2} \)
17 \( 1 + 2492912754 T + p^{15} T^{2} \)
19 \( 1 - 4669782244 T + p^{15} T^{2} \)
23 \( 1 + 18467933400 T + p^{15} T^{2} \)
29 \( 1 + 115953449418 T + p^{15} T^{2} \)
31 \( 1 - 56187023200 T + p^{15} T^{2} \)
37 \( 1 - 614764926830 T + p^{15} T^{2} \)
41 \( 1 + 549859792410 T + p^{15} T^{2} \)
43 \( 1 + 982884444028 T + p^{15} T^{2} \)
47 \( 1 + 2076144322896 T + p^{15} T^{2} \)
53 \( 1 + 12048378188130 T + p^{15} T^{2} \)
59 \( 1 + 23087905758324 T + p^{15} T^{2} \)
61 \( 1 - 8505809142442 T + p^{15} T^{2} \)
67 \( 1 + 12331010771476 T + p^{15} T^{2} \)
71 \( 1 - 58989192692472 T + p^{15} T^{2} \)
73 \( 1 - 5609828808070 T + p^{15} T^{2} \)
79 \( 1 - 159918683826800 T + p^{15} T^{2} \)
83 \( 1 + 57675894342876 T + p^{15} T^{2} \)
89 \( 1 - 362287610413974 T + p^{15} T^{2} \)
97 \( 1 - 539786645144926 T + p^{15} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.631982688941781915865644447895, −9.160942334002059555754667046716, −7.977374590776373879837287463304, −6.50115391382720269146262308649, −5.79410040350637247621230275092, −4.73505861250393115564761618536, −3.64975434293010409990825503352, −1.90260654199414338004170810992, −1.16264266864241463869129564640, 0, 1.16264266864241463869129564640, 1.90260654199414338004170810992, 3.64975434293010409990825503352, 4.73505861250393115564761618536, 5.79410040350637247621230275092, 6.50115391382720269146262308649, 7.977374590776373879837287463304, 9.160942334002059555754667046716, 9.631982688941781915865644447895

Graph of the $Z$-function along the critical line