Properties

Label 2-1456-13.12-c1-0-11
Degree $2$
Conductor $1456$
Sign $0.601 - 0.798i$
Analytic cond. $11.6262$
Root an. cond. $3.40972$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.539·3-s − 0.460i·5-s + i·7-s − 2.70·9-s − 0.829i·11-s + (−2.87 − 2.17i)13-s + 0.248i·15-s + 2.87·17-s + 4.32i·19-s − 0.539i·21-s + 5.04·23-s + 4.78·25-s + 3.07·27-s + 0.261·29-s + 6.80i·31-s + ⋯
L(s)  = 1  − 0.311·3-s − 0.206i·5-s + 0.377i·7-s − 0.903·9-s − 0.250i·11-s + (−0.798 − 0.601i)13-s + 0.0641i·15-s + 0.698·17-s + 0.992i·19-s − 0.117i·21-s + 1.05·23-s + 0.957·25-s + 0.592·27-s + 0.0486·29-s + 1.22i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.601 - 0.798i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.601 - 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1456\)    =    \(2^{4} \cdot 7 \cdot 13\)
Sign: $0.601 - 0.798i$
Analytic conductor: \(11.6262\)
Root analytic conductor: \(3.40972\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1456} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1456,\ (\ :1/2),\ 0.601 - 0.798i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.175442543\)
\(L(\frac12)\) \(\approx\) \(1.175442543\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - iT \)
13 \( 1 + (2.87 + 2.17i)T \)
good3 \( 1 + 0.539T + 3T^{2} \)
5 \( 1 + 0.460iT - 5T^{2} \)
11 \( 1 + 0.829iT - 11T^{2} \)
17 \( 1 - 2.87T + 17T^{2} \)
19 \( 1 - 4.32iT - 19T^{2} \)
23 \( 1 - 5.04T + 23T^{2} \)
29 \( 1 - 0.261T + 29T^{2} \)
31 \( 1 - 6.80iT - 31T^{2} \)
37 \( 1 - 9.51iT - 37T^{2} \)
41 \( 1 - 6.68iT - 41T^{2} \)
43 \( 1 + 0.418T + 43T^{2} \)
47 \( 1 + 9.24iT - 47T^{2} \)
53 \( 1 - 1.63T + 53T^{2} \)
59 \( 1 - 2.78iT - 59T^{2} \)
61 \( 1 - 7.26T + 61T^{2} \)
67 \( 1 + 5.07iT - 67T^{2} \)
71 \( 1 - 12.7iT - 71T^{2} \)
73 \( 1 - 0.353iT - 73T^{2} \)
79 \( 1 + 2.81T + 79T^{2} \)
83 \( 1 - 10.3iT - 83T^{2} \)
89 \( 1 - 5.43iT - 89T^{2} \)
97 \( 1 - 12.6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.727407001962422913533691092048, −8.613492552436201041848428585849, −8.280541896053846024512744699301, −7.17054716964200965025792064719, −6.29216175045846442873491656423, −5.33846463915139323724964527824, −4.96043796384357736110118931897, −3.40837539028587995268273255430, −2.69453015020525254771308147651, −1.08824254876877395266273774873, 0.58029520829532333251668410503, 2.28946354071416587610606244139, 3.21513219141069085811710486734, 4.44849047817613504636305579098, 5.20926722409444685144594183349, 6.11687568792733096953552054529, 7.07749309900906762945671842586, 7.56352229810701786367878436974, 8.778030766020012938464049946070, 9.310773688398195143135225469581

Graph of the $Z$-function along the critical line