L(s) = 1 | + (0.223 − 0.387i)3-s − 0.513i·5-s + (−0.866 + 0.5i)7-s + (1.39 + 2.42i)9-s + (1.05 + 0.606i)11-s + (−0.600 − 3.55i)13-s + (−0.199 − 0.115i)15-s + (3.32 + 5.76i)17-s + (−5.39 + 3.11i)19-s + 0.447i·21-s + (0.100 − 0.173i)23-s + 4.73·25-s + 2.59·27-s + (−0.904 + 1.56i)29-s + 0.945i·31-s + ⋯ |
L(s) = 1 | + (0.129 − 0.223i)3-s − 0.229i·5-s + (−0.327 + 0.188i)7-s + (0.466 + 0.808i)9-s + (0.316 + 0.182i)11-s + (−0.166 − 0.986i)13-s + (−0.0514 − 0.0296i)15-s + (0.807 + 1.39i)17-s + (−1.23 + 0.714i)19-s + 0.0977i·21-s + (0.0209 − 0.0362i)23-s + 0.947·25-s + 0.499·27-s + (−0.167 + 0.290i)29-s + 0.169i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 - 0.647i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.762 - 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.670850520\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.670850520\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (0.600 + 3.55i)T \) |
good | 3 | \( 1 + (-0.223 + 0.387i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 0.513iT - 5T^{2} \) |
| 11 | \( 1 + (-1.05 - 0.606i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.32 - 5.76i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (5.39 - 3.11i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.100 + 0.173i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.904 - 1.56i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.945iT - 31T^{2} \) |
| 37 | \( 1 + (-0.151 - 0.0873i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.45 - 3.14i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.13 + 1.97i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.38iT - 47T^{2} \) |
| 53 | \( 1 - 9.32T + 53T^{2} \) |
| 59 | \( 1 + (12.8 - 7.39i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.46 - 7.72i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.09 - 3.51i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-9.82 + 5.67i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 2.60iT - 73T^{2} \) |
| 79 | \( 1 - 11.0T + 79T^{2} \) |
| 83 | \( 1 + 0.866iT - 83T^{2} \) |
| 89 | \( 1 + (-6.67 - 3.85i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (13.3 - 7.70i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.674096925063876814869046649146, −8.602210457448659503116721406427, −8.096023797687915129223566995942, −7.28737150939698157029470045350, −6.29022812292064874809388646258, −5.54636479758673706908881539082, −4.53380308048875304824985732950, −3.58819771355891175881923651771, −2.40445895739250599277110609607, −1.28122494877889166652738820180,
0.73896740530563543122104561006, 2.33958665539969000651915157758, 3.42296261876935485129675375319, 4.25106316929777467126247227979, 5.14189245991706532446344130358, 6.50028477430778801854779704366, 6.77601655172173187996398085630, 7.73218942242908593887364165006, 8.952958624158323906421644604216, 9.324736350726828559198079780572