L(s) = 1 | + (1.21 − 2.10i)3-s + 3.98i·5-s + (0.866 − 0.5i)7-s + (−1.45 − 2.52i)9-s + (−2.90 − 1.67i)11-s + (0.364 + 3.58i)13-s + (8.40 + 4.85i)15-s + (3.40 + 5.89i)17-s + (−0.621 + 0.359i)19-s − 2.43i·21-s + (−0.509 + 0.882i)23-s − 10.9·25-s + 0.200·27-s + (4.79 − 8.31i)29-s + 4.52i·31-s + ⋯ |
L(s) = 1 | + (0.702 − 1.21i)3-s + 1.78i·5-s + (0.327 − 0.188i)7-s + (−0.486 − 0.842i)9-s + (−0.875 − 0.505i)11-s + (0.100 + 0.994i)13-s + (2.16 + 1.25i)15-s + (0.825 + 1.43i)17-s + (−0.142 + 0.0823i)19-s − 0.530i·21-s + (−0.106 + 0.183i)23-s − 2.18·25-s + 0.0385·27-s + (0.891 − 1.54i)29-s + 0.812i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 - 0.595i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.803 - 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.038849322\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.038849322\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-0.364 - 3.58i)T \) |
good | 3 | \( 1 + (-1.21 + 2.10i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 3.98iT - 5T^{2} \) |
| 11 | \( 1 + (2.90 + 1.67i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.40 - 5.89i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.621 - 0.359i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.509 - 0.882i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.79 + 8.31i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.52iT - 31T^{2} \) |
| 37 | \( 1 + (-4.53 - 2.61i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.985 + 0.568i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.25 - 7.37i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 11.0iT - 47T^{2} \) |
| 53 | \( 1 - 3.19T + 53T^{2} \) |
| 59 | \( 1 + (6.50 - 3.75i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.90 - 3.29i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (12.6 + 7.30i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-11.0 + 6.39i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 7.44iT - 73T^{2} \) |
| 79 | \( 1 + 3.61T + 79T^{2} \) |
| 83 | \( 1 + 3.31iT - 83T^{2} \) |
| 89 | \( 1 + (-5.96 - 3.44i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (10.3 - 5.97i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.677446088794207309502702894707, −8.388348101506273817362487413682, −7.85845469632273388715174455382, −7.33636047243672231677298690818, −6.35989195915948677234504000699, −6.04262856083971983486330705388, −4.28881880085622846954282787014, −3.15604534624045657990513836955, −2.52892283010375205112455643073, −1.51294330562379350557915099693,
0.77791887200849392320895218395, 2.40927949571220831635296276142, 3.48555159802540316373015858894, 4.55890212555967475119206993581, 5.07068762514784007943866054433, 5.58015930771681756404279427488, 7.37762585179102809001562900756, 8.155445137288145122510019657435, 8.728772026503517444487601641019, 9.370017891308690933670294357894