Properties

Label 2-1456-1.1-c1-0-23
Degree $2$
Conductor $1456$
Sign $1$
Analytic cond. $11.6262$
Root an. cond. $3.40972$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.87·3-s + 2.47·5-s − 7-s + 5.24·9-s + 2.87·11-s + 13-s + 7.11·15-s + 0.624·17-s + 0.478·19-s − 2.87·21-s − 3.35·23-s + 1.14·25-s + 6.45·27-s − 4.64·29-s − 9.51·31-s + 8.24·33-s − 2.47·35-s + 4.87·37-s + 2.87·39-s + 1.28·41-s − 1.85·43-s + 13.0·45-s − 9.51·47-s + 49-s + 1.79·51-s + 8.64·53-s + 7.11·55-s + ⋯
L(s)  = 1  + 1.65·3-s + 1.10·5-s − 0.377·7-s + 1.74·9-s + 0.865·11-s + 0.277·13-s + 1.83·15-s + 0.151·17-s + 0.109·19-s − 0.626·21-s − 0.698·23-s + 0.229·25-s + 1.24·27-s − 0.861·29-s − 1.70·31-s + 1.43·33-s − 0.419·35-s + 0.800·37-s + 0.459·39-s + 0.201·41-s − 0.282·43-s + 1.93·45-s − 1.38·47-s + 0.142·49-s + 0.251·51-s + 1.18·53-s + 0.959·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1456\)    =    \(2^{4} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(11.6262\)
Root analytic conductor: \(3.40972\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1456,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.653284264\)
\(L(\frac12)\) \(\approx\) \(3.653284264\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 - 2.87T + 3T^{2} \)
5 \( 1 - 2.47T + 5T^{2} \)
11 \( 1 - 2.87T + 11T^{2} \)
17 \( 1 - 0.624T + 17T^{2} \)
19 \( 1 - 0.478T + 19T^{2} \)
23 \( 1 + 3.35T + 23T^{2} \)
29 \( 1 + 4.64T + 29T^{2} \)
31 \( 1 + 9.51T + 31T^{2} \)
37 \( 1 - 4.87T + 37T^{2} \)
41 \( 1 - 1.28T + 41T^{2} \)
43 \( 1 + 1.85T + 43T^{2} \)
47 \( 1 + 9.51T + 47T^{2} \)
53 \( 1 - 8.64T + 53T^{2} \)
59 \( 1 + 10.7T + 59T^{2} \)
61 \( 1 - 12.4T + 61T^{2} \)
67 \( 1 - 9.99T + 67T^{2} \)
71 \( 1 + 4.36T + 71T^{2} \)
73 \( 1 + 2.72T + 73T^{2} \)
79 \( 1 + 0.136T + 79T^{2} \)
83 \( 1 - 14.2T + 83T^{2} \)
89 \( 1 + 13.5T + 89T^{2} \)
97 \( 1 - 17.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.522293226393407066096205732234, −8.883358482682676317032156270610, −8.061070322261674738544552474760, −7.20904845634999987498856478263, −6.33879698388336291564922862033, −5.46022103138563030282404852668, −4.04750067369301721186081708219, −3.41608767134629788398997252777, −2.30462699691378342870096063516, −1.58139965699532698646216061791, 1.58139965699532698646216061791, 2.30462699691378342870096063516, 3.41608767134629788398997252777, 4.04750067369301721186081708219, 5.46022103138563030282404852668, 6.33879698388336291564922862033, 7.20904845634999987498856478263, 8.061070322261674738544552474760, 8.883358482682676317032156270610, 9.522293226393407066096205732234

Graph of the $Z$-function along the critical line