L(s) = 1 | + (−2.14 − 2.09i)3-s + 4.10i·5-s − 9.08·7-s + (0.233 + 8.99i)9-s + 17.0·13-s + (8.59 − 8.81i)15-s + 10.7i·17-s + 9.28·19-s + (19.5 + 19.0i)21-s − 39.8i·23-s + 8.15·25-s + (18.3 − 19.8i)27-s − 16.5i·29-s + 12.0·31-s − 37.2i·35-s + ⋯ |
L(s) = 1 | + (−0.716 − 0.697i)3-s + 0.820i·5-s − 1.29·7-s + (0.0259 + 0.999i)9-s + 1.31·13-s + (0.572 − 0.587i)15-s + 0.630i·17-s + 0.488·19-s + (0.929 + 0.905i)21-s − 1.73i·23-s + 0.326·25-s + (0.679 − 0.734i)27-s − 0.571i·29-s + 0.390·31-s − 1.06i·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.716 - 0.697i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.716 - 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.4385765569\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4385765569\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.14 + 2.09i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 - 4.10iT - 25T^{2} \) |
| 7 | \( 1 + 9.08T + 49T^{2} \) |
| 13 | \( 1 - 17.0T + 169T^{2} \) |
| 17 | \( 1 - 10.7iT - 289T^{2} \) |
| 19 | \( 1 - 9.28T + 361T^{2} \) |
| 23 | \( 1 + 39.8iT - 529T^{2} \) |
| 29 | \( 1 + 16.5iT - 841T^{2} \) |
| 31 | \( 1 - 12.0T + 961T^{2} \) |
| 37 | \( 1 + 26.6T + 1.36e3T^{2} \) |
| 41 | \( 1 - 50.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 77.1T + 1.84e3T^{2} \) |
| 47 | \( 1 - 74.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 18.5iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 40.8iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 9.45T + 3.72e3T^{2} \) |
| 67 | \( 1 - 37.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + 102. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 79.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + 39.2T + 6.24e3T^{2} \) |
| 83 | \( 1 - 92.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 58.9iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 103.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.863611678002573917830136262840, −8.715020003189528916069210576169, −7.949994133080703467453549471047, −6.86082619175016310579180733977, −6.39363630709374154544698696005, −5.97695978739094299562276638877, −4.64463813997163896617509475824, −3.43844560078172966516057067083, −2.62788799147715829996720522240, −1.18999151652844131382206657905,
0.15817545215852309582524599452, 1.31423734774577305159796325628, 3.30762785537968549184480871595, 3.73218099712560372306774523745, 5.03271093173498977213383700422, 5.55699531209435575413632083189, 6.47198350274182656485073379304, 7.18511811070823171552113592448, 8.609924471744035442689705829076, 9.073145704958678583070886724189