L(s) = 1 | + (0.309 − 0.951i)3-s + (1.30 − 0.951i)5-s + (−0.0729 − 0.224i)7-s + (−0.809 − 0.587i)9-s + (−3.42 − 2.48i)13-s + (−0.499 − 1.53i)15-s + (−0.118 + 0.0857i)17-s + (2.11 − 6.51i)19-s − 0.236·21-s − 5·23-s + (−0.736 + 2.26i)25-s + (−0.809 + 0.587i)27-s + (−0.618 − 1.90i)29-s + (−2.73 − 1.98i)31-s + (−0.309 − 0.224i)35-s + ⋯ |
L(s) = 1 | + (0.178 − 0.549i)3-s + (0.585 − 0.425i)5-s + (−0.0275 − 0.0848i)7-s + (−0.269 − 0.195i)9-s + (−0.950 − 0.690i)13-s + (−0.129 − 0.397i)15-s + (−0.0286 + 0.0207i)17-s + (0.485 − 1.49i)19-s − 0.0515·21-s − 1.04·23-s + (−0.147 + 0.453i)25-s + (−0.155 + 0.113i)27-s + (−0.114 − 0.353i)29-s + (−0.491 − 0.357i)31-s + (−0.0522 − 0.0379i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.445076340\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.445076340\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-1.30 + 0.951i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (0.0729 + 0.224i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (3.42 + 2.48i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.118 - 0.0857i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.11 + 6.51i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 5T + 23T^{2} \) |
| 29 | \( 1 + (0.618 + 1.90i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (2.73 + 1.98i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.690 - 2.12i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.69 + 8.28i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 2.52T + 43T^{2} \) |
| 47 | \( 1 + (-2.95 + 9.09i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (5.35 + 3.88i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.64 - 11.2i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (8.78 - 6.37i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 4.38T + 67T^{2} \) |
| 71 | \( 1 + (-11.7 + 8.55i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.85 - 14.9i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (7.04 + 5.11i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (1.42 - 1.03i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 5.18T + 89T^{2} \) |
| 97 | \( 1 + (12.1 + 8.83i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.246333128310640993111910801737, −8.463827620673337090485490331177, −7.49109296844971202969273047060, −6.99840902855503553477909143732, −5.78914277708794566295110981149, −5.27224120514055789025162436032, −4.12486898709802626723506992266, −2.83409420054908193705295798806, −1.97103444875439180676193588617, −0.53307402057853990245427053955,
1.78075936738433047008292557584, 2.75682038748005692918026590354, 3.84724000288795026297637033609, 4.73161280143911498120240878389, 5.76358290155086385297368987602, 6.39040437797865112624860267706, 7.51693694487059948937307424567, 8.150610992570081514884144667032, 9.387859327521079198361819125813, 9.646288149339882392226458694350