L(s) = 1 | + (−0.669 − 0.743i)3-s + (1.01 + 1.40i)5-s + (−0.104 + 0.994i)9-s + (0.360 − 1.69i)15-s + 1.73i·23-s + (−0.618 + 1.90i)25-s + (0.809 − 0.587i)27-s + (−0.809 − 0.587i)31-s + (0.309 + 0.951i)37-s + (−1.5 + 0.866i)45-s + (0.809 − 0.587i)49-s + (1.64 − 0.535i)59-s + 67-s + (1.28 − 1.15i)69-s + (−1.01 − 1.40i)71-s + ⋯ |
L(s) = 1 | + (−0.669 − 0.743i)3-s + (1.01 + 1.40i)5-s + (−0.104 + 0.994i)9-s + (0.360 − 1.69i)15-s + 1.73i·23-s + (−0.618 + 1.90i)25-s + (0.809 − 0.587i)27-s + (−0.809 − 0.587i)31-s + (0.309 + 0.951i)37-s + (−1.5 + 0.866i)45-s + (0.809 − 0.587i)49-s + (1.64 − 0.535i)59-s + 67-s + (1.28 − 1.15i)69-s + (−1.01 − 1.40i)71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.787 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.787 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.011022614\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.011022614\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.669 + 0.743i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (-1.01 - 1.40i)T + (-0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - 1.73iT - T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.309 - 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-1.64 + 0.535i)T + (0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (1.01 + 1.40i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + 1.73iT - T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00160609954917241554142037719, −9.163366801169210643934251015421, −7.86984821389561805461294501870, −7.21528018452515573675329336060, −6.53667398686889951249926698190, −5.83648008721264423934051240285, −5.18360304291849945972877265506, −3.60968611628685196122883097070, −2.52050012700322518387870720049, −1.64099454667109613460972748872,
0.962500085915908788705968567549, 2.38651356999876357598051945047, 3.96106146622212769211528640427, 4.71853743851537688763101770910, 5.44680415130028421573963828017, 6.03977941500465012671721569945, 7.00843409900697899922044798111, 8.447193546928966741051088404774, 8.912019849561396151957413194948, 9.643266235442962396403488084234