| L(s) = 1 | + i·2-s − 0.272i·3-s − 4-s + 0.272·6-s + 4.19·7-s − i·8-s + 2.92·9-s − 2.78i·11-s + 0.272i·12-s + 2.50·13-s + 4.19i·14-s + 16-s − 7.15i·17-s + 2.92i·18-s + 2.27i·19-s + ⋯ |
| L(s) = 1 | + 0.707i·2-s − 0.157i·3-s − 0.5·4-s + 0.111·6-s + 1.58·7-s − 0.353i·8-s + 0.975·9-s − 0.838i·11-s + 0.0786i·12-s + 0.695·13-s + 1.12i·14-s + 0.250·16-s − 1.73i·17-s + 0.689i·18-s + 0.521i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0160i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0160i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.041626390\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.041626390\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 + (0.0862 + 5.38i)T \) |
| good | 3 | \( 1 + 0.272iT - 3T^{2} \) |
| 7 | \( 1 - 4.19T + 7T^{2} \) |
| 11 | \( 1 + 2.78iT - 11T^{2} \) |
| 13 | \( 1 - 2.50T + 13T^{2} \) |
| 17 | \( 1 + 7.15iT - 17T^{2} \) |
| 19 | \( 1 - 2.27iT - 19T^{2} \) |
| 23 | \( 1 + 8.57T + 23T^{2} \) |
| 31 | \( 1 + 0.925iT - 31T^{2} \) |
| 37 | \( 1 + 5.64iT - 37T^{2} \) |
| 41 | \( 1 - 1.96iT - 41T^{2} \) |
| 43 | \( 1 + 8.39iT - 43T^{2} \) |
| 47 | \( 1 - 10.1iT - 47T^{2} \) |
| 53 | \( 1 + 9.82T + 53T^{2} \) |
| 59 | \( 1 - 11.3T + 59T^{2} \) |
| 61 | \( 1 - 9.98iT - 61T^{2} \) |
| 67 | \( 1 - 1.74T + 67T^{2} \) |
| 71 | \( 1 - 7.21T + 71T^{2} \) |
| 73 | \( 1 + 6.43iT - 73T^{2} \) |
| 79 | \( 1 - 4.23iT - 79T^{2} \) |
| 83 | \( 1 + 15.3T + 83T^{2} \) |
| 89 | \( 1 - 10.9iT - 89T^{2} \) |
| 97 | \( 1 - 13.0iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.397641348162760714007546658863, −8.441018463201094337242751239389, −7.86715801320662500440625232288, −7.30598667136621930137575025318, −6.20162755056758319659792780143, −5.46127578882881780283662789809, −4.53961300027868554834213695288, −3.82195250824128874425252070263, −2.16371924661641938320783140135, −0.934045915260708936989074799316,
1.52031308253517073847634249202, 1.91727439257532332516288288615, 3.65141734088772216244631588751, 4.37596791479120607354749490114, 5.00906633521172356769452747712, 6.15757926667482709135287685378, 7.25605112087561648097274667625, 8.206257366250072803025410804697, 8.558525378761692413681409110975, 9.834488365956030556560887305613