L(s) = 1 | − 0.232i·2-s − 2.39i·3-s + 1.94·4-s + (−2.08 + 0.812i)5-s − 0.556·6-s + 2.06i·7-s − 0.917i·8-s − 2.73·9-s + (0.188 + 0.484i)10-s − 0.480·11-s − 4.65i·12-s − 4.07i·13-s + 0.480·14-s + (1.94 + 4.98i)15-s + 3.67·16-s + ⋯ |
L(s) = 1 | − 0.164i·2-s − 1.38i·3-s + 0.972·4-s + (−0.931 + 0.363i)5-s − 0.227·6-s + 0.780i·7-s − 0.324i·8-s − 0.910·9-s + (0.0597 + 0.153i)10-s − 0.144·11-s − 1.34i·12-s − 1.12i·13-s + 0.128·14-s + (0.502 + 1.28i)15-s + 0.919·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.931 + 0.363i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.931 + 0.363i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.277883610\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.277883610\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.08 - 0.812i)T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + 0.232iT - 2T^{2} \) |
| 3 | \( 1 + 2.39iT - 3T^{2} \) |
| 7 | \( 1 - 2.06iT - 7T^{2} \) |
| 11 | \( 1 + 0.480T + 11T^{2} \) |
| 13 | \( 1 + 4.07iT - 13T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + 8.15iT - 23T^{2} \) |
| 29 | \( 1 + 1.03T + 29T^{2} \) |
| 31 | \( 1 + 6.06T + 31T^{2} \) |
| 37 | \( 1 + 1.29iT - 37T^{2} \) |
| 41 | \( 1 + 10.7T + 41T^{2} \) |
| 43 | \( 1 + 7.45iT - 43T^{2} \) |
| 47 | \( 1 - 3.60iT - 47T^{2} \) |
| 53 | \( 1 + 6.14iT - 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 - 5.65T + 61T^{2} \) |
| 67 | \( 1 - 3.14iT - 67T^{2} \) |
| 71 | \( 1 - 1.81T + 71T^{2} \) |
| 73 | \( 1 + 12.1iT - 73T^{2} \) |
| 79 | \( 1 - 10.2T + 79T^{2} \) |
| 83 | \( 1 + 2.23iT - 83T^{2} \) |
| 89 | \( 1 - 9.37T + 89T^{2} \) |
| 97 | \( 1 - 16.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.802507607056305964090129013090, −8.108318354451983389653284962425, −7.56640223887024180469460066139, −6.72327580109925425720536121529, −6.27596556235525121247755179771, −5.20831670355265096305318147483, −3.67129117369017194870810441125, −2.66545179539142377100737052359, −2.01060462159715679445105571729, −0.47872793324403517313010936962,
1.66851404209737456492844093561, 3.30653777291081007855059941483, 3.91267372278533789420123161916, 4.68672953656850780771085876170, 5.59655392615926168014757517220, 6.81479025899796054443989356678, 7.39174910457049577760376445109, 8.292785325359602537646841662433, 9.167114369374511390882752485613, 9.929920751729878781926316067016