Properties

Label 2-1440-4.3-c4-0-60
Degree $2$
Conductor $1440$
Sign $-0.707 + 0.707i$
Analytic cond. $148.852$
Root an. cond. $12.2005$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11.1·5-s − 47.9i·7-s + 55.4i·11-s − 28.1·13-s − 71.2·17-s − 138. i·19-s + 181. i·23-s + 125.·25-s + 1.56e3·29-s + 404. i·31-s + 536. i·35-s − 1.19e3·37-s + 2.26e3·41-s − 2.88e3i·43-s − 972. i·47-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.978i·7-s + 0.458i·11-s − 0.166·13-s − 0.246·17-s − 0.383i·19-s + 0.343i·23-s + 0.200·25-s + 1.86·29-s + 0.420i·31-s + 0.437i·35-s − 0.869·37-s + 1.35·41-s − 1.55i·43-s − 0.440i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(148.852\)
Root analytic conductor: \(12.2005\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{1440} (991, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1440,\ (\ :2),\ -0.707 + 0.707i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.028070727\)
\(L(\frac12)\) \(\approx\) \(1.028070727\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 11.1T \)
good7 \( 1 + 47.9iT - 2.40e3T^{2} \)
11 \( 1 - 55.4iT - 1.46e4T^{2} \)
13 \( 1 + 28.1T + 2.85e4T^{2} \)
17 \( 1 + 71.2T + 8.35e4T^{2} \)
19 \( 1 + 138. iT - 1.30e5T^{2} \)
23 \( 1 - 181. iT - 2.79e5T^{2} \)
29 \( 1 - 1.56e3T + 7.07e5T^{2} \)
31 \( 1 - 404. iT - 9.23e5T^{2} \)
37 \( 1 + 1.19e3T + 1.87e6T^{2} \)
41 \( 1 - 2.26e3T + 2.82e6T^{2} \)
43 \( 1 + 2.88e3iT - 3.41e6T^{2} \)
47 \( 1 + 972. iT - 4.87e6T^{2} \)
53 \( 1 + 4.69e3T + 7.89e6T^{2} \)
59 \( 1 - 5.25e3iT - 1.21e7T^{2} \)
61 \( 1 - 2.43e3T + 1.38e7T^{2} \)
67 \( 1 - 933. iT - 2.01e7T^{2} \)
71 \( 1 + 8.62e3iT - 2.54e7T^{2} \)
73 \( 1 - 6.19e3T + 2.83e7T^{2} \)
79 \( 1 - 361. iT - 3.89e7T^{2} \)
83 \( 1 + 3.53e3iT - 4.74e7T^{2} \)
89 \( 1 + 2.66e3T + 6.27e7T^{2} \)
97 \( 1 - 1.03e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.659469047097298141490932246792, −7.77935780472264986201231868000, −7.10822294229659761133267870048, −6.45977189712525377673279392983, −5.17594125877274722409048949791, −4.42026938458932174580066265105, −3.62767156312555818845183271391, −2.53338960237605568779682462473, −1.23291438066332300467691116516, −0.23340622136197472061978724038, 1.02443906492191162551416183564, 2.36106132383720178832774891816, 3.14301937916016215753652781450, 4.28111043542974754936124172566, 5.12782471175310753857279340866, 6.07500833579934513284297149522, 6.73394013111051363932363351838, 7.936092949412477063854328972531, 8.379339358093249562748688111630, 9.233628173299017348225257365441

Graph of the $Z$-function along the critical line