| L(s) = 1 | + (−8.58 − 7.16i)5-s + 28.3i·7-s + 65.2·11-s + 33.6i·13-s − 73.3i·17-s + 134.·19-s − 14.7i·23-s + (22.3 + 122. i)25-s − 224.·29-s − 68.8·31-s + (202. − 243. i)35-s − 196. i·37-s + 143.·41-s − 15.0i·43-s − 134. i·47-s + ⋯ |
| L(s) = 1 | + (−0.767 − 0.640i)5-s + 1.52i·7-s + 1.78·11-s + 0.718i·13-s − 1.04i·17-s + 1.61·19-s − 0.133i·23-s + (0.178 + 0.983i)25-s − 1.43·29-s − 0.398·31-s + (0.979 − 1.17i)35-s − 0.872i·37-s + 0.545·41-s − 0.0534i·43-s − 0.417i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.640 - 0.767i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.640 - 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.998296291\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.998296291\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (8.58 + 7.16i)T \) |
| good | 7 | \( 1 - 28.3iT - 343T^{2} \) |
| 11 | \( 1 - 65.2T + 1.33e3T^{2} \) |
| 13 | \( 1 - 33.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 73.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 134.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 14.7iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 224.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 68.8T + 2.97e4T^{2} \) |
| 37 | \( 1 + 196. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 143.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 15.0iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 134. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 262. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 119.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 16.5T + 2.26e5T^{2} \) |
| 67 | \( 1 - 545. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 199.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 43.2iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 438.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.22e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 723.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.13e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.189187629661858420910846663069, −8.795507949261063672295523240467, −7.62479217509087790643784072354, −6.94832739312943683883370088778, −5.83859592585846246485813520324, −5.17369215844217033729553371373, −4.14798981091642938559465305181, −3.31075046706515923633951982129, −2.02102699726267411937159830675, −0.916420813942254349472207768368,
0.60056120893212819174337816022, 1.53040152235286694191464169871, 3.42371333599497566894840840404, 3.65984965634900910398055854886, 4.58132878198676697965991392999, 5.93459929366125543139677946006, 6.78622486322649681410690078639, 7.43732265132176471546070038974, 7.974532122857053507935299634760, 9.128831560725129775758468624750