L(s) = 1 | + (1.5 + 0.866i)3-s + (−0.5 + 0.866i)5-s + (−1.5 − 2.59i)7-s + (1.5 + 2.59i)9-s + (2 + 3.46i)11-s + (2 − 3.46i)13-s + (−1.5 + 0.866i)15-s + 2·17-s + 2·19-s − 5.19i·21-s + (3.5 − 6.06i)23-s + (−0.499 − 0.866i)25-s + 5.19i·27-s + (4.5 + 7.79i)29-s + (−3 + 5.19i)31-s + ⋯ |
L(s) = 1 | + (0.866 + 0.499i)3-s + (−0.223 + 0.387i)5-s + (−0.566 − 0.981i)7-s + (0.5 + 0.866i)9-s + (0.603 + 1.04i)11-s + (0.554 − 0.960i)13-s + (−0.387 + 0.223i)15-s + 0.485·17-s + 0.458·19-s − 1.13i·21-s + (0.729 − 1.26i)23-s + (−0.0999 − 0.173i)25-s + 0.999i·27-s + (0.835 + 1.44i)29-s + (−0.538 + 0.933i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.277879680\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.277879680\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2 - 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 + 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (-3.5 + 6.06i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 - 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3 - 5.19i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (4.5 - 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.5 - 2.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 - 11.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.5 - 2.59i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 8T + 73T^{2} \) |
| 79 | \( 1 + (5 + 8.66i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.5 + 6.06i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (-7 - 12.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.711676928177112821308923450659, −8.820509884844381138709402753007, −8.077001323888815233106077750829, −7.09647897740824745320782206073, −6.77301527900561703522936967243, −5.25545604249761292761246106319, −4.34169950456451886517474604303, −3.49435726826145050355321227370, −2.84595659644318422784676185891, −1.24681582128021905837638373273,
1.02074679397857580838969339398, 2.27032257874278009754569112778, 3.36095979141425679052665092176, 3.99332336757437231258778983069, 5.48529482331468642891240993658, 6.20910172218835029345130070436, 7.03247170236136401176869984337, 8.034347358198727872612474359148, 8.684205340604873195326364701413, 9.286516392215275375626881020447