L(s) = 1 | + (−1.64 − 2.30i)2-s + (−2.59 + 7.56i)4-s + (−7.28 − 7.28i)5-s + 29.9·7-s + (21.6 − 6.48i)8-s + (−4.78 + 28.7i)10-s + (−0.408 + 0.408i)11-s + (−26.6 − 26.6i)13-s + (−49.2 − 68.9i)14-s + (−50.5 − 39.2i)16-s − 83.0i·17-s + (−51.6 + 51.6i)19-s + (74.0 − 36.2i)20-s + (1.61 + 0.268i)22-s − 173. i·23-s + ⋯ |
L(s) = 1 | + (−0.581 − 0.813i)2-s + (−0.323 + 0.946i)4-s + (−0.651 − 0.651i)5-s + 1.61·7-s + (0.958 − 0.286i)8-s + (−0.151 + 0.909i)10-s + (−0.0111 + 0.0111i)11-s + (−0.568 − 0.568i)13-s + (−0.940 − 1.31i)14-s + (−0.790 − 0.613i)16-s − 1.18i·17-s + (−0.623 + 0.623i)19-s + (0.827 − 0.405i)20-s + (0.0156 + 0.00259i)22-s − 1.57i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.772 + 0.635i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.772 + 0.635i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.326569 - 0.911379i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.326569 - 0.911379i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.64 + 2.30i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (7.28 + 7.28i)T + 125iT^{2} \) |
| 7 | \( 1 - 29.9T + 343T^{2} \) |
| 11 | \( 1 + (0.408 - 0.408i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (26.6 + 26.6i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 + 83.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (51.6 - 51.6i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 173. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (167. - 167. i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 191. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-185. + 185. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + 62.7T + 6.89e4T^{2} \) |
| 43 | \( 1 + (193. + 193. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 93.1T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-249. - 249. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (24.6 - 24.6i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (-451. - 451. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (-453. + 453. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 348. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 923. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 989. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (325. + 325. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 1.00e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 997.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.05612061503166371414888192708, −11.26860250140082754817032231688, −10.37037389761666759124705035824, −8.987716017229798490361900550627, −8.167915796619046690067322236999, −7.43591019537891582473529820616, −5.06649902067553322601822700210, −4.16512410753108974029640834966, −2.24779651198385421749370857700, −0.60042468287977219289227478295,
1.72898719835802668435869398756, 4.19654981539181889349636353610, 5.39490838524879223826090090246, 6.87609379292420968301726841587, 7.77435325822312417311521281455, 8.521054107730257954589177367069, 9.857370457336718950289259765183, 11.10885743518518754933549983533, 11.51242660239798537634439502780, 13.29831767633148311677888000812