Properties

Label 2-12e2-48.35-c3-0-14
Degree $2$
Conductor $144$
Sign $0.815 - 0.578i$
Analytic cond. $8.49627$
Root an. cond. $2.91483$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.78 + 0.514i)2-s + (7.47 + 2.86i)4-s + (3.43 + 3.43i)5-s + 8.14·7-s + (19.3 + 11.8i)8-s + (7.79 + 11.3i)10-s + (−1.92 + 1.92i)11-s + (9.16 + 9.16i)13-s + (22.6 + 4.19i)14-s + (47.6 + 42.7i)16-s + 28.6i·17-s + (39.9 − 39.9i)19-s + (15.8 + 35.5i)20-s + (−6.33 + 4.35i)22-s + 80.3i·23-s + ⋯
L(s)  = 1  + (0.983 + 0.181i)2-s + (0.933 + 0.357i)4-s + (0.307 + 0.307i)5-s + 0.439·7-s + (0.853 + 0.521i)8-s + (0.246 + 0.358i)10-s + (−0.0526 + 0.0526i)11-s + (0.195 + 0.195i)13-s + (0.432 + 0.0800i)14-s + (0.744 + 0.668i)16-s + 0.409i·17-s + (0.481 − 0.481i)19-s + (0.177 + 0.396i)20-s + (−0.0613 + 0.0422i)22-s + 0.728i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 - 0.578i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $0.815 - 0.578i$
Analytic conductor: \(8.49627\)
Root analytic conductor: \(2.91483\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{144} (35, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 144,\ (\ :3/2),\ 0.815 - 0.578i)\)

Particular Values

\(L(2)\) \(\approx\) \(3.14633 + 1.00162i\)
\(L(\frac12)\) \(\approx\) \(3.14633 + 1.00162i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-2.78 - 0.514i)T \)
3 \( 1 \)
good5 \( 1 + (-3.43 - 3.43i)T + 125iT^{2} \)
7 \( 1 - 8.14T + 343T^{2} \)
11 \( 1 + (1.92 - 1.92i)T - 1.33e3iT^{2} \)
13 \( 1 + (-9.16 - 9.16i)T + 2.19e3iT^{2} \)
17 \( 1 - 28.6iT - 4.91e3T^{2} \)
19 \( 1 + (-39.9 + 39.9i)T - 6.85e3iT^{2} \)
23 \( 1 - 80.3iT - 1.21e4T^{2} \)
29 \( 1 + (113. - 113. i)T - 2.43e4iT^{2} \)
31 \( 1 + 306. iT - 2.97e4T^{2} \)
37 \( 1 + (-47.8 + 47.8i)T - 5.06e4iT^{2} \)
41 \( 1 + 349.T + 6.89e4T^{2} \)
43 \( 1 + (164. + 164. i)T + 7.95e4iT^{2} \)
47 \( 1 - 40.5T + 1.03e5T^{2} \)
53 \( 1 + (454. + 454. i)T + 1.48e5iT^{2} \)
59 \( 1 + (-245. + 245. i)T - 2.05e5iT^{2} \)
61 \( 1 + (-186. - 186. i)T + 2.26e5iT^{2} \)
67 \( 1 + (118. - 118. i)T - 3.00e5iT^{2} \)
71 \( 1 + 414. iT - 3.57e5T^{2} \)
73 \( 1 - 431. iT - 3.89e5T^{2} \)
79 \( 1 + 1.04e3iT - 4.93e5T^{2} \)
83 \( 1 + (-739. - 739. i)T + 5.71e5iT^{2} \)
89 \( 1 + 942.T + 7.04e5T^{2} \)
97 \( 1 + 983.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94602746916265852239556027695, −11.73497632416512220413876055603, −11.03839627074017720106548978161, −9.820438407717202179176290783596, −8.269303058103733655320681265297, −7.15846946163837039030635880140, −6.04648931245906481158917157667, −4.92311841952110124443646924012, −3.54925396381596073859205600060, −1.98827022973976082497486273201, 1.53404476926484848914078995035, 3.20529739231004781201329244834, 4.70629912162290267201558174917, 5.65114457204247044670942855749, 6.92032341386078892451692086037, 8.183971013683085990507441780972, 9.646049645134890469209445483767, 10.74377087186345373969294189719, 11.68174948858095014416987379686, 12.61633153049527129479552756188

Graph of the $Z$-function along the critical line