L(s) = 1 | + (2.79 + 0.463i)2-s + (7.56 + 2.58i)4-s + (9.40 − 9.40i)5-s − 3.57·7-s + (19.9 + 10.7i)8-s + (30.5 − 21.8i)10-s + (3.36 + 3.36i)11-s + (26.9 − 26.9i)13-s + (−9.96 − 1.65i)14-s + (50.6 + 39.1i)16-s − 12.7i·17-s + (−50.0 − 50.0i)19-s + (95.4 − 46.8i)20-s + (7.82 + 10.9i)22-s + 208. i·23-s + ⋯ |
L(s) = 1 | + (0.986 + 0.163i)2-s + (0.946 + 0.323i)4-s + (0.840 − 0.840i)5-s − 0.192·7-s + (0.880 + 0.474i)8-s + (0.967 − 0.691i)10-s + (0.0921 + 0.0921i)11-s + (0.574 − 0.574i)13-s + (−0.190 − 0.0316i)14-s + (0.790 + 0.612i)16-s − 0.182i·17-s + (−0.604 − 0.604i)19-s + (1.06 − 0.523i)20-s + (0.0757 + 0.106i)22-s + 1.88i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0959i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(3.40973 - 0.164023i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.40973 - 0.164023i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.79 - 0.463i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-9.40 + 9.40i)T - 125iT^{2} \) |
| 7 | \( 1 + 3.57T + 343T^{2} \) |
| 11 | \( 1 + (-3.36 - 3.36i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (-26.9 + 26.9i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + 12.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (50.0 + 50.0i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 - 208. iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-134. - 134. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 + 80.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (308. + 308. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 + 172.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (87.0 - 87.0i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 525.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-127. + 127. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (172. + 172. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (332. - 332. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (-556. - 556. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 450. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 797. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 70.1iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (636. - 636. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 925.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.26e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.00306407740773105602185735903, −11.86431234797947421546815777028, −10.76354570912106479172019116821, −9.534841351877770665014200098683, −8.351055613353281764592645080839, −6.95385425118522634204047017399, −5.76076031357482614335340075737, −4.94193008919637789180148313974, −3.39156907790067387678674355872, −1.65289231889466753352910011641,
1.93618251710940251915651202009, 3.25301743748347847860083509335, 4.71305613764266066116488429080, 6.34896924174736241406957290554, 6.55258491011054750344227311842, 8.380475380752301890008934789407, 10.05388369754517297872478056931, 10.59756377534580993331947470478, 11.75756026948472055804953624706, 12.76130226706502795153878611521