L(s) = 1 | + (1.80 + 2.17i)2-s + (−1.47 + 7.86i)4-s + (6.31 − 6.31i)5-s + 16.2·7-s + (−19.7 + 10.9i)8-s + (25.1 + 2.34i)10-s + (48.1 + 48.1i)11-s + (−8.61 + 8.61i)13-s + (29.3 + 35.4i)14-s + (−59.6 − 23.2i)16-s + 53.2i·17-s + (−55.5 − 55.5i)19-s + (40.3 + 58.9i)20-s + (−17.8 + 191. i)22-s − 66.9i·23-s + ⋯ |
L(s) = 1 | + (0.638 + 0.769i)2-s + (−0.184 + 0.982i)4-s + (0.564 − 0.564i)5-s + 0.878·7-s + (−0.874 + 0.485i)8-s + (0.795 + 0.0741i)10-s + (1.31 + 1.31i)11-s + (−0.183 + 0.183i)13-s + (0.561 + 0.676i)14-s + (−0.931 − 0.363i)16-s + 0.759i·17-s + (−0.670 − 0.670i)19-s + (0.450 + 0.659i)20-s + (−0.173 + 1.85i)22-s − 0.607i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.148 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.01162 + 1.73239i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.01162 + 1.73239i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.80 - 2.17i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-6.31 + 6.31i)T - 125iT^{2} \) |
| 7 | \( 1 - 16.2T + 343T^{2} \) |
| 11 | \( 1 + (-48.1 - 48.1i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (8.61 - 8.61i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 - 53.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (55.5 + 55.5i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 66.9iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-126. - 126. i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 + 121. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (250. + 250. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 402.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (-187. + 187. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 96.1T + 1.03e5T^{2} \) |
| 53 | \( 1 + (90.3 - 90.3i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (488. + 488. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (-378. + 378. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (223. + 223. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 231. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 265. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 604. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-351. + 351. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 1.36e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.85e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.78233142922539072603728343936, −12.29185158994305628862854397591, −11.03524603451098944267705698073, −9.409604714479263667582359540061, −8.637446218512164864518907736253, −7.34203595416474580862327340229, −6.31444289009987180663658144137, −4.97106596695369786033997674594, −4.16072037204956643296889651405, −1.91111814540366918457027653070,
1.29235609297341535935916922884, 2.86229109119369956048318180331, 4.26126036108701844450709213678, 5.67892928857725282999058807080, 6.59838282311370264762063062856, 8.401885852218813161315299742846, 9.554979171854107716691177336610, 10.63105918624607193205097876534, 11.43235911757680618224442713768, 12.19931794873470376403065394480