| L(s) = 1 | + (1.58 − 2.74i)2-s + (0.300 − 0.520i)3-s + (−1.04 − 1.80i)4-s + 12.4·5-s + (−0.953 − 1.65i)6-s + (−5.31 − 9.20i)7-s + 18.7·8-s + (13.3 + 23.0i)9-s + (19.7 − 34.2i)10-s + (−5.5 + 9.52i)11-s − 1.24·12-s + (19.1 − 42.7i)13-s − 33.7·14-s + (3.74 − 6.48i)15-s + (38.1 − 66.0i)16-s + (31.4 + 54.5i)17-s + ⋯ |
| L(s) = 1 | + (0.561 − 0.972i)2-s + (0.0577 − 0.100i)3-s + (−0.130 − 0.225i)4-s + 1.11·5-s + (−0.0648 − 0.112i)6-s + (−0.286 − 0.496i)7-s + 0.830·8-s + (0.493 + 0.854i)9-s + (0.625 − 1.08i)10-s + (−0.150 + 0.261i)11-s − 0.0300·12-s + (0.408 − 0.912i)13-s − 0.644·14-s + (0.0644 − 0.111i)15-s + (0.596 − 1.03i)16-s + (0.449 + 0.778i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.350 + 0.936i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.350 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.35274 - 1.63241i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.35274 - 1.63241i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 + (5.5 - 9.52i)T \) |
| 13 | \( 1 + (-19.1 + 42.7i)T \) |
| good | 2 | \( 1 + (-1.58 + 2.74i)T + (-4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (-0.300 + 0.520i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 - 12.4T + 125T^{2} \) |
| 7 | \( 1 + (5.31 + 9.20i)T + (-171.5 + 297. i)T^{2} \) |
| 17 | \( 1 + (-31.4 - 54.5i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (70.2 + 121. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (34.6 - 60.0i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-69.1 + 119. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + 168.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (118. - 204. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (103. - 179. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-150. - 261. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + 343.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 306.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-133. - 230. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-366. - 635. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-90.3 + 156. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-109. - 189. i)T + (-1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 + 817.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 289.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 971.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (702. - 1.21e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (860. + 1.48e3i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.87579366009895313574175586519, −11.37748982959055636323317797571, −10.39060861172067753014297277442, −9.952439044931908693323448344502, −8.231946447680275046741009788651, −7.00965661341162621193559151796, −5.53679600725714776781331855089, −4.27090530391306454306363928344, −2.75602503189481421836736881328, −1.55593679958473792635623860782,
1.80769016957894011118965234571, 3.90162705242188596682943894614, 5.44424445853966729719539921677, 6.19070471410684415062346342687, 7.04931266932761746517884649671, 8.649389018143628441628275737391, 9.685411920332615348845561954114, 10.59198021381906236329458037197, 12.18013541971104895383676601744, 13.06616776534274631283392122682