L(s) = 1 | + (−0.428 − 1.60i)2-s + (0.382 − 0.663i)3-s + (−0.647 + 0.373i)4-s + (−0.104 − 0.104i)5-s + (−1.22 − 0.328i)6-s + (0.542 − 2.02i)7-s + (−1.46 − 1.46i)8-s + (1.20 + 2.09i)9-s + (−0.122 + 0.211i)10-s + (−0.436 − 3.28i)11-s + 0.571i·12-s + (−2.52 + 2.57i)13-s − 3.47·14-s + (−0.109 + 0.0292i)15-s + (−2.46 + 4.27i)16-s + (1.88 + 3.25i)17-s + ⋯ |
L(s) = 1 | + (−0.303 − 1.13i)2-s + (0.221 − 0.382i)3-s + (−0.323 + 0.186i)4-s + (−0.0466 − 0.0466i)5-s + (−0.500 − 0.134i)6-s + (0.204 − 0.764i)7-s + (−0.519 − 0.519i)8-s + (0.402 + 0.696i)9-s + (−0.0386 + 0.0669i)10-s + (−0.131 − 0.991i)11-s + 0.165i·12-s + (−0.701 + 0.713i)13-s − 0.928·14-s + (−0.0281 + 0.00754i)15-s + (−0.617 + 1.06i)16-s + (0.456 + 0.790i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.580 + 0.814i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.580 + 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.481005 - 0.933266i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.481005 - 0.933266i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (0.436 + 3.28i)T \) |
| 13 | \( 1 + (2.52 - 2.57i)T \) |
good | 2 | \( 1 + (0.428 + 1.60i)T + (-1.73 + i)T^{2} \) |
| 3 | \( 1 + (-0.382 + 0.663i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.104 + 0.104i)T + 5iT^{2} \) |
| 7 | \( 1 + (-0.542 + 2.02i)T + (-6.06 - 3.5i)T^{2} \) |
| 17 | \( 1 + (-1.88 - 3.25i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.23 - 1.40i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (5.14 + 2.96i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.93 - 2.84i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-7.15 - 7.15i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.877 - 3.27i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (1.88 + 7.02i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-2.18 - 3.78i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.00268 + 0.00268i)T - 47iT^{2} \) |
| 53 | \( 1 + 5.02T + 53T^{2} \) |
| 59 | \( 1 + (4.54 + 1.21i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (11.8 - 6.83i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.04 - 2.15i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (1.26 - 4.72i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (6.92 + 6.92i)T + 73iT^{2} \) |
| 79 | \( 1 + 10.2iT - 79T^{2} \) |
| 83 | \( 1 + (1.45 - 1.45i)T - 83iT^{2} \) |
| 89 | \( 1 + (0.243 + 0.908i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.57 + 5.87i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.42713065749598081581189280668, −11.83240682204971395151187420918, −10.47371111099337960997040315167, −10.22095031057724035222455934122, −8.677027299918522935250487863219, −7.63094293767459125425573101433, −6.33542914228662080236702369748, −4.46036350866888791814671401462, −2.94301526422487487421839033258, −1.37049033948156422838342464171,
2.84888727818545376570018039246, 4.82685930928184984238077456982, 5.92865774620435051036718842745, 7.26673807235641110677896578522, 7.957002175876040977755654710346, 9.373012397397973033359386873022, 9.832525493195914732737584036928, 11.72294472035578757007630256952, 12.26235627754030428070922338933, 13.81740331076377351521694180154