L(s) = 1 | + 2.41i·2-s + i·3-s − 3.82·4-s − 2.41·6-s + 3.41i·7-s − 4.41i·8-s − 9-s − 1.41·11-s − 3.82i·12-s − 2.58i·13-s − 8.24·14-s + 2.99·16-s − 6.82i·17-s − 2.41i·18-s − 19-s + ⋯ |
L(s) = 1 | + 1.70i·2-s + 0.577i·3-s − 1.91·4-s − 0.985·6-s + 1.29i·7-s − 1.56i·8-s − 0.333·9-s − 0.426·11-s − 1.10i·12-s − 0.717i·13-s − 2.20·14-s + 0.749·16-s − 1.65i·17-s − 0.569i·18-s − 0.229·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2224758159\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2224758159\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 - 2.41iT - 2T^{2} \) |
| 7 | \( 1 - 3.41iT - 7T^{2} \) |
| 11 | \( 1 + 1.41T + 11T^{2} \) |
| 13 | \( 1 + 2.58iT - 13T^{2} \) |
| 17 | \( 1 + 6.82iT - 17T^{2} \) |
| 23 | \( 1 - 3.65iT - 23T^{2} \) |
| 29 | \( 1 + 5.07T + 29T^{2} \) |
| 31 | \( 1 + 10.4T + 31T^{2} \) |
| 37 | \( 1 + 3.07iT - 37T^{2} \) |
| 41 | \( 1 + 4.58T + 41T^{2} \) |
| 43 | \( 1 + 3.41iT - 43T^{2} \) |
| 47 | \( 1 - 11.6iT - 47T^{2} \) |
| 53 | \( 1 + 4iT - 53T^{2} \) |
| 59 | \( 1 - 8.48T + 59T^{2} \) |
| 61 | \( 1 + 5.65T + 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 - 12.4T + 71T^{2} \) |
| 73 | \( 1 - 2iT - 73T^{2} \) |
| 79 | \( 1 + 11.3T + 79T^{2} \) |
| 83 | \( 1 + 6.48iT - 83T^{2} \) |
| 89 | \( 1 - 14.7T + 89T^{2} \) |
| 97 | \( 1 - 4.24iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.777479712105243101426554903868, −9.190487232450484959335053419400, −8.679603612569919888614368352683, −7.72024848632860527460778424818, −7.17080134243982280545657683482, −5.99755040317724892408994811045, −5.37408684470790528660445431016, −5.03338798173030763925376351624, −3.68797103428698016705989957426, −2.48398024978209773095816678685,
0.089029927205885183509843580473, 1.45148502431081731912984660102, 2.17208860997407972119271264366, 3.57875389035724105245981503095, 4.00909195946539138799715523001, 5.10304137887260366736252639084, 6.39455478338696639706121626170, 7.26695776196807122973908873750, 8.215143043763422286961935567596, 8.982161756735445040775025004401