L(s) = 1 | + (−1.33 + 1.33i)3-s + (−1.27 + 1.27i)5-s − 0.148i·7-s − 0.586i·9-s + (−3.12 + 1.11i)11-s + (0.488 − 0.488i)13-s − 3.42i·15-s + 3.29i·17-s + (1.88 + 1.88i)19-s + (0.198 + 0.198i)21-s − 7.21·23-s + 1.72i·25-s + (−3.23 − 3.23i)27-s + (4.17 − 4.17i)29-s − 2.16i·31-s + ⋯ |
L(s) = 1 | + (−0.773 + 0.773i)3-s + (−0.571 + 0.571i)5-s − 0.0560i·7-s − 0.195i·9-s + (−0.942 + 0.335i)11-s + (0.135 − 0.135i)13-s − 0.884i·15-s + 0.799i·17-s + (0.432 + 0.432i)19-s + (0.0433 + 0.0433i)21-s − 1.50·23-s + 0.345i·25-s + (−0.621 − 0.621i)27-s + (0.774 − 0.774i)29-s − 0.388i·31-s + ⋯ |
Λ(s)=(=(1408s/2ΓC(s)L(s)(−0.178+0.983i)Λ(2−s)
Λ(s)=(=(1408s/2ΓC(s+1/2)L(s)(−0.178+0.983i)Λ(1−s)
Degree: |
2 |
Conductor: |
1408
= 27⋅11
|
Sign: |
−0.178+0.983i
|
Analytic conductor: |
11.2429 |
Root analytic conductor: |
3.35304 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1408(351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1408, ( :1/2), −0.178+0.983i)
|
Particular Values
L(1) |
≈ |
0.02146849516 |
L(21) |
≈ |
0.02146849516 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(3.12−1.11i)T |
good | 3 | 1+(1.33−1.33i)T−3iT2 |
| 5 | 1+(1.27−1.27i)T−5iT2 |
| 7 | 1+0.148iT−7T2 |
| 13 | 1+(−0.488+0.488i)T−13iT2 |
| 17 | 1−3.29iT−17T2 |
| 19 | 1+(−1.88−1.88i)T+19iT2 |
| 23 | 1+7.21T+23T2 |
| 29 | 1+(−4.17+4.17i)T−29iT2 |
| 31 | 1+2.16iT−31T2 |
| 37 | 1+(−0.771+0.771i)T−37iT2 |
| 41 | 1+8.26T+41T2 |
| 43 | 1+(7.14−7.14i)T−43iT2 |
| 47 | 1+7.43iT−47T2 |
| 53 | 1+(−6.68+6.68i)T−53iT2 |
| 59 | 1+(1.21+1.21i)T+59iT2 |
| 61 | 1+(−2.33+2.33i)T−61iT2 |
| 67 | 1+(−7.02+7.02i)T−67iT2 |
| 71 | 1+4.85T+71T2 |
| 73 | 1−8.13T+73T2 |
| 79 | 1−5.02T+79T2 |
| 83 | 1+(7.65+7.65i)T+83iT2 |
| 89 | 1+6.12iT−89T2 |
| 97 | 1+6.62T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19128275211113603753492189228, −9.770954968479088899650618116106, −8.255458586481483379757562161524, −7.891199379950983200113678306657, −6.81411274414242404050724333401, −5.87608266946666595655456185380, −5.16554352667636829300407443734, −4.21033581999076345586773618602, −3.44596791875234106070090910856, −2.09890041447874685507481577890,
0.01087185747021606746129118818, 1.10976673836411366390108020645, 2.58739565083842242061514038924, 3.83934920186630218251813415242, 4.97759265379992201815245873910, 5.59021414386967013732753118796, 6.58842619117412402916752013893, 7.27868253087633338486187332940, 8.136105224323632860389775782845, 8.766541627914399359201129002377