L(s) = 1 | + (−0.348 + 0.603i)5-s + (−1.09 − 1.90i)7-s + (2.04 + 3.54i)11-s + (0.5 − 0.866i)13-s − 1.99·17-s + 2.80·19-s + (1.46 − 2.54i)23-s + (2.25 + 3.90i)25-s + (0.380 + 0.658i)29-s + (−1.51 + 2.62i)31-s + 1.53·35-s + 3.64·37-s + (3.73 − 6.46i)41-s + (4.13 + 7.16i)43-s + (2.77 + 4.80i)47-s + ⋯ |
L(s) = 1 | + (−0.155 + 0.270i)5-s + (−0.415 − 0.719i)7-s + (0.617 + 1.06i)11-s + (0.138 − 0.240i)13-s − 0.484·17-s + 0.644·19-s + (0.306 − 0.530i)23-s + (0.451 + 0.781i)25-s + (0.0706 + 0.122i)29-s + (−0.272 + 0.471i)31-s + 0.258·35-s + 0.599·37-s + (0.583 − 1.01i)41-s + (0.630 + 1.09i)43-s + (0.404 + 0.701i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1404 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.377i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1404 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.925 - 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.580910467\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.580910467\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.348 - 0.603i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.09 + 1.90i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.04 - 3.54i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 1.99T + 17T^{2} \) |
| 19 | \( 1 - 2.80T + 19T^{2} \) |
| 23 | \( 1 + (-1.46 + 2.54i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.380 - 0.658i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.51 - 2.62i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.64T + 37T^{2} \) |
| 41 | \( 1 + (-3.73 + 6.46i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.13 - 7.16i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.77 - 4.80i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 8.15T + 53T^{2} \) |
| 59 | \( 1 + (-2.16 + 3.75i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.68 - 6.38i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.10 + 1.92i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.60T + 71T^{2} \) |
| 73 | \( 1 - 7.07T + 73T^{2} \) |
| 79 | \( 1 + (2.66 + 4.62i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.91 - 15.4i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 1.14T + 89T^{2} \) |
| 97 | \( 1 + (-9.11 - 15.7i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.550837600143911863464776787765, −8.999681289068919384387316592024, −7.82122861115616527051274298549, −7.09192776747809381350994659025, −6.60069273292357940694919817060, −5.41794876756634481042921858602, −4.39440625411494120441535948110, −3.64288168967219244422412899635, −2.50257196263718973925879612004, −1.05298818575888486421624965651,
0.832515431854962717580496077497, 2.38193126396203621629112623140, 3.41370939685024266613243175678, 4.34670980305104270600988589660, 5.50822731013070826733159775919, 6.12725651134116325316811559339, 7.00394040017909730639783237249, 8.035723516325097513067024746260, 8.887659848808307822675574976323, 9.237439307408480198724863208456