L(s) = 1 | + (−1.73 + i)3-s + (1.73 − 2i)7-s + (0.499 − 0.866i)9-s + (0.5 + 0.866i)11-s − 3i·13-s + (1.73 − i)17-s + (−2.5 + 4.33i)19-s + (−0.999 + 5.19i)21-s + (−6.06 − 3.5i)23-s − 4.00i·27-s + 6·29-s + (−2 − 3.46i)31-s + (−1.73 − 0.999i)33-s + (−4.33 − 2.5i)37-s + (3 + 5.19i)39-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.577i)3-s + (0.654 − 0.755i)7-s + (0.166 − 0.288i)9-s + (0.150 + 0.261i)11-s − 0.832i·13-s + (0.420 − 0.242i)17-s + (−0.573 + 0.993i)19-s + (−0.218 + 1.13i)21-s + (−1.26 − 0.729i)23-s − 0.769i·27-s + 1.11·29-s + (−0.359 − 0.622i)31-s + (−0.301 − 0.174i)33-s + (−0.711 − 0.410i)37-s + (0.480 + 0.832i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.330 + 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.330 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8571657945\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8571657945\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-1.73 + 2i)T \) |
good | 3 | \( 1 + (1.73 - i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3iT - 13T^{2} \) |
| 17 | \( 1 + (-1.73 + i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.5 - 4.33i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.06 + 3.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.33 + 2.5i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 5T + 41T^{2} \) |
| 43 | \( 1 - 6iT - 43T^{2} \) |
| 47 | \( 1 + (7.79 + 4.5i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-9.52 + 5.5i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4 - 6.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6 + 10.3i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.46 + 2i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4T + 71T^{2} \) |
| 73 | \( 1 + (-10.3 + 6i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-7 + 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.853544576748644376492461665358, −8.347861814874528299313792382454, −7.964790814646868141561078343263, −6.82708818289721519086904105408, −5.96972413819591610267129714264, −5.17153634662819944737670411144, −4.44006574932971259656464994554, −3.58395363244916475216193540501, −1.97601280831452375196762100091, −0.43085976744882913828925056628,
1.25058585158651339437805787567, 2.33219141980804770340483815664, 3.78452168032819384951494684738, 4.96541716030442589235518553448, 5.58670142686039896710079978726, 6.47887112433296232073742489007, 7.01411197030077772484136897056, 8.203476836995063119300897092557, 8.773500362635987673891080849186, 9.727641460871687400619742156702