L(s) = 1 | + (−1.41 − 0.0671i)2-s + (2.38 + 0.638i)3-s + (1.99 + 0.189i)4-s + (−0.525 − 2.17i)5-s + (−3.32 − 1.06i)6-s + (2.10 − 1.60i)7-s + (−2.79 − 0.401i)8-s + (2.68 + 1.54i)9-s + (0.596 + 3.10i)10-s + (−4.09 + 2.36i)11-s + (4.62 + 1.72i)12-s + (0.0592 + 0.0592i)13-s + (−3.07 + 2.13i)14-s + (0.135 − 5.51i)15-s + (3.92 + 0.755i)16-s + (4.77 + 1.27i)17-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0475i)2-s + (1.37 + 0.368i)3-s + (0.995 + 0.0948i)4-s + (−0.235 − 0.971i)5-s + (−1.35 − 0.433i)6-s + (0.794 − 0.607i)7-s + (−0.989 − 0.142i)8-s + (0.893 + 0.515i)9-s + (0.188 + 0.982i)10-s + (−1.23 + 0.713i)11-s + (1.33 + 0.497i)12-s + (0.0164 + 0.0164i)13-s + (−0.822 + 0.569i)14-s + (0.0349 − 1.42i)15-s + (0.981 + 0.188i)16-s + (1.15 + 0.310i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 + 0.216i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.976 + 0.216i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06628 - 0.116870i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06628 - 0.116870i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 + 0.0671i)T \) |
| 5 | \( 1 + (0.525 + 2.17i)T \) |
| 7 | \( 1 + (-2.10 + 1.60i)T \) |
good | 3 | \( 1 + (-2.38 - 0.638i)T + (2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (4.09 - 2.36i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.0592 - 0.0592i)T + 13iT^{2} \) |
| 17 | \( 1 + (-4.77 - 1.27i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.31 - 2.27i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.292 + 1.09i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 7.27iT - 29T^{2} \) |
| 31 | \( 1 + (4.01 - 2.31i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.596 + 2.22i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 5.71T + 41T^{2} \) |
| 43 | \( 1 + (1.57 - 1.57i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.67 + 0.716i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-2.44 + 9.12i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (1.67 + 2.90i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.978 - 1.69i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.131 - 0.491i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 14.4iT - 71T^{2} \) |
| 73 | \( 1 + (2.48 - 9.26i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-3.05 + 5.28i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.62 - 5.62i)T - 83iT^{2} \) |
| 89 | \( 1 + (-14.4 - 8.34i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.81 + 5.81i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.06814069768588685303855904584, −12.12955570824682063760466183211, −10.63558785047521607472508865827, −9.890432422418368087715307805403, −8.775069793294707597965629356560, −8.068448458806000849595739227193, −7.44418413118122835092665338768, −5.14648812933714876373486855903, −3.56095816813702230460358758299, −1.82301507870924112188268592943,
2.27118370660097191600630362364, 3.15233324436793362119113049122, 5.78563451884278796160199225978, 7.42402296567634703799334752304, 7.935198710357148961459555872974, 8.761064029626651301972973731934, 9.963113549771649040774775533640, 10.98880497842392563776085791071, 11.93314895236731773537421932166, 13.42784104009339340559224792769