L(s) = 1 | + (1.24 + 0.667i)2-s + (0.543 + 2.02i)3-s + (1.10 + 1.66i)4-s + (−1.62 − 1.53i)5-s + (−0.676 + 2.89i)6-s + (0.0742 − 2.64i)7-s + (0.270 + 2.81i)8-s + (−1.22 + 0.704i)9-s + (−0.998 − 3.00i)10-s + (−0.366 − 0.211i)11-s + (−2.77 + 3.15i)12-s + (−1.56 − 1.56i)13-s + (1.85 − 3.24i)14-s + (2.23 − 4.12i)15-s + (−1.54 + 3.69i)16-s + (1.18 + 4.41i)17-s + ⋯ |
L(s) = 1 | + (0.881 + 0.472i)2-s + (0.313 + 1.17i)3-s + (0.554 + 0.832i)4-s + (−0.726 − 0.687i)5-s + (−0.276 + 1.18i)6-s + (0.0280 − 0.999i)7-s + (0.0955 + 0.995i)8-s + (−0.406 + 0.234i)9-s + (−0.315 − 0.948i)10-s + (−0.110 − 0.0637i)11-s + (−0.800 + 0.910i)12-s + (−0.433 − 0.433i)13-s + (0.496 − 0.867i)14-s + (0.576 − 1.06i)15-s + (−0.385 + 0.922i)16-s + (0.286 + 1.07i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.287 - 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.287 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.37107 + 1.01976i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.37107 + 1.01976i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.24 - 0.667i)T \) |
| 5 | \( 1 + (1.62 + 1.53i)T \) |
| 7 | \( 1 + (-0.0742 + 2.64i)T \) |
good | 3 | \( 1 + (-0.543 - 2.02i)T + (-2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (0.366 + 0.211i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.56 + 1.56i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1.18 - 4.41i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (3.66 + 6.35i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.44 - 1.72i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 4.72iT - 29T^{2} \) |
| 31 | \( 1 + (1.70 + 0.982i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (7.20 + 1.92i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 4.01T + 41T^{2} \) |
| 43 | \( 1 + (1.88 - 1.88i)T - 43iT^{2} \) |
| 47 | \( 1 + (1.70 - 6.35i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-0.780 + 0.209i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (1.35 - 2.35i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.925 - 1.60i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.70 + 2.33i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 3.16iT - 71T^{2} \) |
| 73 | \( 1 + (-6.67 + 1.78i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (1.77 + 3.08i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.71 - 4.71i)T - 83iT^{2} \) |
| 89 | \( 1 + (-10.0 + 5.79i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4.64 - 4.64i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.31562706417711470780867531011, −12.68156628493962629126933277967, −11.29358330895802962634230681776, −10.49872986811783067465685508870, −9.069377614892846305909687187146, −8.029005466855319978346869614179, −6.91667241112172302872601660451, −5.10028010858703637515685481301, −4.32371982507303622854007394598, −3.38699846775626402746226689821,
2.06187929405194383416754488374, 3.26460481896013621210120949027, 5.05315663264539663393835397885, 6.55215165534978628404351052001, 7.26797003528174439363177317574, 8.583791375396942989005802545987, 10.15919794136858769736891685504, 11.36953663532449475221783387207, 12.22957627480421800394328613503, 12.67186748888065243201756268388