Properties

Label 2-14-7.2-c7-0-1
Degree $2$
Conductor $14$
Sign $0.649 + 0.760i$
Analytic cond. $4.37339$
Root an. cond. $2.09126$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4 + 6.92i)2-s + (−10.4 − 18.0i)3-s + (−31.9 − 55.4i)4-s + (108. − 187. i)5-s + 167.·6-s + (726. − 544. i)7-s + 511.·8-s + (875. − 1.51e3i)9-s + (867. + 1.50e3i)10-s + (−1.29e3 − 2.23e3i)11-s + (−668. + 1.15e3i)12-s − 8.92e3·13-s + (864. + 7.20e3i)14-s − 4.52e3·15-s + (−2.04e3 + 3.54e3i)16-s + (5.55e3 + 9.62e3i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.223 − 0.386i)3-s + (−0.249 − 0.433i)4-s + (0.387 − 0.671i)5-s + 0.315·6-s + (0.800 − 0.599i)7-s + 0.353·8-s + (0.400 − 0.693i)9-s + (0.274 + 0.474i)10-s + (−0.292 − 0.506i)11-s + (−0.111 + 0.193i)12-s − 1.12·13-s + (0.0842 + 0.702i)14-s − 0.346·15-s + (−0.125 + 0.216i)16-s + (0.274 + 0.475i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.649 + 0.760i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.649 + 0.760i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $0.649 + 0.760i$
Analytic conductor: \(4.37339\)
Root analytic conductor: \(2.09126\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{14} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 14,\ (\ :7/2),\ 0.649 + 0.760i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.08525 - 0.500648i\)
\(L(\frac12)\) \(\approx\) \(1.08525 - 0.500648i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (4 - 6.92i)T \)
7 \( 1 + (-726. + 544. i)T \)
good3 \( 1 + (10.4 + 18.0i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + (-108. + 187. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
11 \( 1 + (1.29e3 + 2.23e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
13 \( 1 + 8.92e3T + 6.27e7T^{2} \)
17 \( 1 + (-5.55e3 - 9.62e3i)T + (-2.05e8 + 3.55e8i)T^{2} \)
19 \( 1 + (-4.32e3 + 7.48e3i)T + (-4.46e8 - 7.74e8i)T^{2} \)
23 \( 1 + (-3.30e4 + 5.72e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 - 1.28e5T + 1.72e10T^{2} \)
31 \( 1 + (-1.02e5 - 1.76e5i)T + (-1.37e10 + 2.38e10i)T^{2} \)
37 \( 1 + (2.45e5 - 4.25e5i)T + (-4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + 6.23e5T + 1.94e11T^{2} \)
43 \( 1 - 4.22e5T + 2.71e11T^{2} \)
47 \( 1 + (-6.02e5 + 1.04e6i)T + (-2.53e11 - 4.38e11i)T^{2} \)
53 \( 1 + (-6.36e5 - 1.10e6i)T + (-5.87e11 + 1.01e12i)T^{2} \)
59 \( 1 + (8.40e5 + 1.45e6i)T + (-1.24e12 + 2.15e12i)T^{2} \)
61 \( 1 + (1.06e6 - 1.83e6i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (-1.67e6 - 2.90e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 - 2.49e6T + 9.09e12T^{2} \)
73 \( 1 + (-1.63e6 - 2.83e6i)T + (-5.52e12 + 9.56e12i)T^{2} \)
79 \( 1 + (-2.09e6 + 3.63e6i)T + (-9.60e12 - 1.66e13i)T^{2} \)
83 \( 1 - 3.35e6T + 2.71e13T^{2} \)
89 \( 1 + (1.19e6 - 2.07e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 - 4.51e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.51853839580638365640454734518, −16.83967056340335110747271330353, −15.14173717594903611835961423072, −13.74202438414967161024787209666, −12.24784600466749305234349563932, −10.26846222914876209033288555047, −8.558999980883254884409565695148, −6.93589192782959242236176041601, −4.99384398925136809305952841458, −1.00219895995496005006123827351, 2.29469491037461225374195697173, 4.98274849897221237012060659966, 7.61522673375439852297053696182, 9.661066970369448145780138292809, 10.80553633908736571166543719922, 12.20394890856757011670640074478, 14.02446804471159408178211084410, 15.45871442304793656608144725321, 17.16793506059234785446559802056, 18.21807396171267329584407240681

Graph of the $Z$-function along the critical line