L(s) = 1 | + 2·2-s − 2·3-s + 4·4-s − 12·5-s − 4·6-s + 7·7-s + 8·8-s − 23·9-s − 24·10-s + 48·11-s − 8·12-s + 56·13-s + 14·14-s + 24·15-s + 16·16-s − 114·17-s − 46·18-s + 2·19-s − 48·20-s − 14·21-s + 96·22-s − 120·23-s − 16·24-s + 19·25-s + 112·26-s + 100·27-s + 28·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.384·3-s + 1/2·4-s − 1.07·5-s − 0.272·6-s + 0.377·7-s + 0.353·8-s − 0.851·9-s − 0.758·10-s + 1.31·11-s − 0.192·12-s + 1.19·13-s + 0.267·14-s + 0.413·15-s + 1/4·16-s − 1.62·17-s − 0.602·18-s + 0.0241·19-s − 0.536·20-s − 0.145·21-s + 0.930·22-s − 1.08·23-s − 0.136·24-s + 0.151·25-s + 0.844·26-s + 0.712·27-s + 0.188·28-s + ⋯ |
Λ(s)=(=(14s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(14s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.136203385 |
L(21) |
≈ |
1.136203385 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−pT |
| 7 | 1−pT |
good | 3 | 1+2T+p3T2 |
| 5 | 1+12T+p3T2 |
| 11 | 1−48T+p3T2 |
| 13 | 1−56T+p3T2 |
| 17 | 1+114T+p3T2 |
| 19 | 1−2T+p3T2 |
| 23 | 1+120T+p3T2 |
| 29 | 1+54T+p3T2 |
| 31 | 1−236T+p3T2 |
| 37 | 1−146T+p3T2 |
| 41 | 1−126T+p3T2 |
| 43 | 1+376T+p3T2 |
| 47 | 1+12T+p3T2 |
| 53 | 1−174T+p3T2 |
| 59 | 1−138T+p3T2 |
| 61 | 1−380T+p3T2 |
| 67 | 1+484T+p3T2 |
| 71 | 1−576T+p3T2 |
| 73 | 1+1150T+p3T2 |
| 79 | 1−776T+p3T2 |
| 83 | 1−378T+p3T2 |
| 89 | 1+390T+p3T2 |
| 97 | 1+1330T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.55131588676090196951499634617, −17.72055148312217158731195318477, −16.28749175378899646413987168836, −15.09686444946375758885149736496, −13.72439967177253770172734555098, −11.83139263343001526257239926146, −11.22780708054999787555304036773, −8.454298897419624859030526746703, −6.36455880219347397070988808395, −4.10728508949545943221697599589,
4.10728508949545943221697599589, 6.36455880219347397070988808395, 8.454298897419624859030526746703, 11.22780708054999787555304036773, 11.83139263343001526257239926146, 13.72439967177253770172734555098, 15.09686444946375758885149736496, 16.28749175378899646413987168836, 17.72055148312217158731195318477, 19.55131588676090196951499634617