Dirichlet series
L(s) = 1 | − 48·2-s − 233·3-s + 768·4-s − 733·5-s + 1.11e4·6-s + 5.01e3·7-s + 8.19e3·8-s + 4.91e4·9-s + 3.51e4·10-s + 7.33e3·11-s − 1.78e5·12-s + 1.97e5·13-s − 2.40e5·14-s + 1.70e5·15-s − 5.89e5·16-s − 3.06e5·17-s − 2.35e6·18-s − 3.77e5·19-s − 5.62e5·20-s − 1.16e6·21-s − 3.52e5·22-s − 2.26e6·23-s − 1.90e6·24-s + 3.12e6·25-s − 9.45e6·26-s − 3.17e6·27-s + 3.84e6·28-s + ⋯ |
L(s) = 1 | − 2.12·2-s − 1.66·3-s + 3/2·4-s − 0.524·5-s + 3.52·6-s + 0.788·7-s + 0.707·8-s + 2.49·9-s + 1.11·10-s + 0.151·11-s − 2.49·12-s + 1.91·13-s − 1.67·14-s + 0.871·15-s − 9/4·16-s − 0.890·17-s − 5.29·18-s − 0.665·19-s − 0.786·20-s − 1.31·21-s − 0.320·22-s − 1.68·23-s − 1.17·24-s + 1.60·25-s − 4.05·26-s − 1.14·27-s + 1.18·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(12\) |
Conductor: | \(7529536\) = \(2^{6} \cdot 7^{6}\) |
Sign: | $1$ |
Analytic conductor: | \(140537.\) |
Root analytic conductor: | \(2.68523\) |
Motivic weight: | \(9\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((12,\ 7529536,\ (\ :[9/2]^{6}),\ 1)\) |
Particular Values
\(L(5)\) | \(\approx\) | \(0.06441463646\) |
\(L(\frac12)\) | \(\approx\) | \(0.06441463646\) |
\(L(\frac{11}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $F_p(T)$ | |
---|---|---|
bad | 2 | \( ( 1 + p^{4} T + p^{8} T^{2} )^{3} \) |
7 | \( 1 - 716 p T - 6763 p^{4} T^{2} + 132184 p^{7} T^{3} - 6763 p^{13} T^{4} - 716 p^{19} T^{5} + p^{27} T^{6} \) | |
good | 3 | \( 1 + 233 T + 5149 T^{2} - 786158 p^{2} T^{3} - 78961157 p^{2} T^{4} + 389726399 p^{5} T^{5} + 401030861374 p^{4} T^{6} + 389726399 p^{14} T^{7} - 78961157 p^{20} T^{8} - 786158 p^{29} T^{9} + 5149 p^{36} T^{10} + 233 p^{45} T^{11} + p^{54} T^{12} \) |
5 | \( 1 + 733 T - 2589737 T^{2} + 1661777128 T^{3} + 3439801929581 T^{4} - 1034369617595257 p T^{5} - 245893183000998026 p^{2} T^{6} - 1034369617595257 p^{10} T^{7} + 3439801929581 p^{18} T^{8} + 1661777128 p^{27} T^{9} - 2589737 p^{36} T^{10} + 733 p^{45} T^{11} + p^{54} T^{12} \) | |
11 | \( 1 - 7339 T - 1638063011 T^{2} - 59929131803902 T^{3} - 86592352599819335 p T^{4} + \)\(57\!\cdots\!41\)\( T^{5} + \)\(19\!\cdots\!86\)\( T^{6} + \)\(57\!\cdots\!41\)\( p^{9} T^{7} - 86592352599819335 p^{19} T^{8} - 59929131803902 p^{27} T^{9} - 1638063011 p^{36} T^{10} - 7339 p^{45} T^{11} + p^{54} T^{12} \) | |
13 | \( ( 1 - 98518 T + 23128160899 T^{2} - 2151914079092708 T^{3} + 23128160899 p^{9} T^{4} - 98518 p^{18} T^{5} + p^{27} T^{6} )^{2} \) | |
17 | \( 1 + 306665 T - 118249479533 T^{2} - 40915218770279116 T^{3} + \)\(36\!\cdots\!93\)\( T^{4} + \)\(12\!\cdots\!99\)\( T^{5} - \)\(52\!\cdots\!38\)\( T^{6} + \)\(12\!\cdots\!99\)\( p^{9} T^{7} + \)\(36\!\cdots\!93\)\( p^{18} T^{8} - 40915218770279116 p^{27} T^{9} - 118249479533 p^{36} T^{10} + 306665 p^{45} T^{11} + p^{54} T^{12} \) | |
19 | \( 1 + 377991 T - 527326979931 T^{2} - 307112754046828810 T^{3} + \)\(12\!\cdots\!55\)\( T^{4} + \)\(63\!\cdots\!07\)\( T^{5} - \)\(14\!\cdots\!18\)\( T^{6} + \)\(63\!\cdots\!07\)\( p^{9} T^{7} + \)\(12\!\cdots\!55\)\( p^{18} T^{8} - 307112754046828810 p^{27} T^{9} - 527326979931 p^{36} T^{10} + 377991 p^{45} T^{11} + p^{54} T^{12} \) | |
23 | \( 1 + 2267255 T - 572332935647 T^{2} - 3259880926523493262 T^{3} + \)\(39\!\cdots\!43\)\( T^{4} + \)\(70\!\cdots\!27\)\( T^{5} + \)\(19\!\cdots\!98\)\( T^{6} + \)\(70\!\cdots\!27\)\( p^{9} T^{7} + \)\(39\!\cdots\!43\)\( p^{18} T^{8} - 3259880926523493262 p^{27} T^{9} - 572332935647 p^{36} T^{10} + 2267255 p^{45} T^{11} + p^{54} T^{12} \) | |
29 | \( ( 1 + 6542978 T + 27077371504275 T^{2} + 2337075386063582620 p T^{3} + 27077371504275 p^{9} T^{4} + 6542978 p^{18} T^{5} + p^{27} T^{6} )^{2} \) | |
31 | \( 1 + 6654517 T - 35266205130495 T^{2} - 3416211213892327710 p T^{3} + \)\(21\!\cdots\!19\)\( T^{4} + \)\(19\!\cdots\!17\)\( T^{5} - \)\(60\!\cdots\!42\)\( T^{6} + \)\(19\!\cdots\!17\)\( p^{9} T^{7} + \)\(21\!\cdots\!19\)\( p^{18} T^{8} - 3416211213892327710 p^{28} T^{9} - 35266205130495 p^{36} T^{10} + 6654517 p^{45} T^{11} + p^{54} T^{12} \) | |
37 | \( 1 + 22287969 T - 21443869395225 T^{2} - \)\(46\!\cdots\!72\)\( T^{3} + \)\(67\!\cdots\!17\)\( T^{4} + \)\(48\!\cdots\!23\)\( T^{5} - \)\(28\!\cdots\!86\)\( T^{6} + \)\(48\!\cdots\!23\)\( p^{9} T^{7} + \)\(67\!\cdots\!17\)\( p^{18} T^{8} - \)\(46\!\cdots\!72\)\( p^{27} T^{9} - 21443869395225 p^{36} T^{10} + 22287969 p^{45} T^{11} + p^{54} T^{12} \) | |
41 | \( ( 1 - 34048098 T + 1300690668411159 T^{2} - \)\(23\!\cdots\!64\)\( T^{3} + 1300690668411159 p^{9} T^{4} - 34048098 p^{18} T^{5} + p^{27} T^{6} )^{2} \) | |
43 | \( ( 1 + 62824140 T + 2320736417731089 T^{2} + \)\(57\!\cdots\!40\)\( T^{3} + 2320736417731089 p^{9} T^{4} + 62824140 p^{18} T^{5} + p^{27} T^{6} )^{2} \) | |
47 | \( 1 + 52703019 T - 1338372320657487 T^{2} - \)\(23\!\cdots\!74\)\( T^{3} + \)\(59\!\cdots\!71\)\( T^{4} + \)\(75\!\cdots\!47\)\( T^{5} - \)\(51\!\cdots\!22\)\( T^{6} + \)\(75\!\cdots\!47\)\( p^{9} T^{7} + \)\(59\!\cdots\!71\)\( p^{18} T^{8} - \)\(23\!\cdots\!74\)\( p^{27} T^{9} - 1338372320657487 p^{36} T^{10} + 52703019 p^{45} T^{11} + p^{54} T^{12} \) | |
53 | \( 1 + 12091125 T - 3093729837293337 T^{2} + \)\(34\!\cdots\!48\)\( T^{3} + \)\(16\!\cdots\!73\)\( T^{4} - \)\(62\!\cdots\!13\)\( T^{5} + \)\(59\!\cdots\!98\)\( T^{6} - \)\(62\!\cdots\!13\)\( p^{9} T^{7} + \)\(16\!\cdots\!73\)\( p^{18} T^{8} + \)\(34\!\cdots\!48\)\( p^{27} T^{9} - 3093729837293337 p^{36} T^{10} + 12091125 p^{45} T^{11} + p^{54} T^{12} \) | |
59 | \( 1 + 12949897 T - 1594882595738603 T^{2} - \)\(30\!\cdots\!78\)\( T^{3} - \)\(32\!\cdots\!61\)\( T^{4} + \)\(32\!\cdots\!97\)\( T^{5} + \)\(36\!\cdots\!74\)\( T^{6} + \)\(32\!\cdots\!97\)\( p^{9} T^{7} - \)\(32\!\cdots\!61\)\( p^{18} T^{8} - \)\(30\!\cdots\!78\)\( p^{27} T^{9} - 1594882595738603 p^{36} T^{10} + 12949897 p^{45} T^{11} + p^{54} T^{12} \) | |
61 | \( 1 + 160252153 T - 14234381709867777 T^{2} - \)\(10\!\cdots\!56\)\( T^{3} + \)\(53\!\cdots\!49\)\( T^{4} + \)\(32\!\cdots\!99\)\( p T^{5} - \)\(14\!\cdots\!94\)\( p^{2} T^{6} + \)\(32\!\cdots\!99\)\( p^{10} T^{7} + \)\(53\!\cdots\!49\)\( p^{18} T^{8} - \)\(10\!\cdots\!56\)\( p^{27} T^{9} - 14234381709867777 p^{36} T^{10} + 160252153 p^{45} T^{11} + p^{54} T^{12} \) | |
67 | \( 1 + 480890225 T + 74976954078885197 T^{2} + \)\(15\!\cdots\!34\)\( T^{3} + \)\(58\!\cdots\!43\)\( T^{4} + \)\(13\!\cdots\!47\)\( p T^{5} + \)\(96\!\cdots\!62\)\( T^{6} + \)\(13\!\cdots\!47\)\( p^{10} T^{7} + \)\(58\!\cdots\!43\)\( p^{18} T^{8} + \)\(15\!\cdots\!34\)\( p^{27} T^{9} + 74976954078885197 p^{36} T^{10} + 480890225 p^{45} T^{11} + p^{54} T^{12} \) | |
71 | \( ( 1 + 37210720 T + 117772904777029461 T^{2} + \)\(37\!\cdots\!56\)\( T^{3} + 117772904777029461 p^{9} T^{4} + 37210720 p^{18} T^{5} + p^{27} T^{6} )^{2} \) | |
73 | \( 1 - 251382283 T - 16115949267395701 T^{2} + \)\(40\!\cdots\!76\)\( T^{3} - \)\(60\!\cdots\!79\)\( T^{4} - \)\(93\!\cdots\!77\)\( T^{5} + \)\(74\!\cdots\!82\)\( T^{6} - \)\(93\!\cdots\!77\)\( p^{9} T^{7} - \)\(60\!\cdots\!79\)\( p^{18} T^{8} + \)\(40\!\cdots\!76\)\( p^{27} T^{9} - 16115949267395701 p^{36} T^{10} - 251382283 p^{45} T^{11} + p^{54} T^{12} \) | |
79 | \( 1 - 286494785 T - 228249178975019367 T^{2} + \)\(51\!\cdots\!90\)\( T^{3} + \)\(39\!\cdots\!91\)\( T^{4} - \)\(45\!\cdots\!85\)\( T^{5} - \)\(43\!\cdots\!98\)\( T^{6} - \)\(45\!\cdots\!85\)\( p^{9} T^{7} + \)\(39\!\cdots\!91\)\( p^{18} T^{8} + \)\(51\!\cdots\!90\)\( p^{27} T^{9} - 228249178975019367 p^{36} T^{10} - 286494785 p^{45} T^{11} + p^{54} T^{12} \) | |
83 | \( ( 1 - 1147591172 T + 974458842151282569 T^{2} - \)\(47\!\cdots\!96\)\( T^{3} + 974458842151282569 p^{9} T^{4} - 1147591172 p^{18} T^{5} + p^{27} T^{6} )^{2} \) | |
89 | \( 1 + 901243845 T - 346930495326018789 T^{2} - \)\(12\!\cdots\!16\)\( T^{3} + \)\(41\!\cdots\!85\)\( T^{4} + \)\(56\!\cdots\!27\)\( T^{5} - \)\(14\!\cdots\!02\)\( T^{6} + \)\(56\!\cdots\!27\)\( p^{9} T^{7} + \)\(41\!\cdots\!85\)\( p^{18} T^{8} - \)\(12\!\cdots\!16\)\( p^{27} T^{9} - 346930495326018789 p^{36} T^{10} + 901243845 p^{45} T^{11} + p^{54} T^{12} \) | |
97 | \( ( 1 - 314853938 T + 758253851848651967 T^{2} - \)\(23\!\cdots\!12\)\( T^{3} + 758253851848651967 p^{9} T^{4} - 314853938 p^{18} T^{5} + p^{27} T^{6} )^{2} \) | |
show more | ||
show less |
Imaginary part of the first few zeros on the critical line
−9.502140131357562771333181333054, −9.091412480882095486469291278981, −8.770332826021364783220626998641, −8.538156081920978798464806868610, −8.398062079144583811937111026447, −7.962343782178611885070074950542, −7.62749740066138978785466828663, −7.41770087390379670564938062402, −7.11057869757295200526171999191, −6.51434776403877759155207686533, −6.51287415339116265989039785308, −6.17298071896908446392345348886, −5.61581954701456905887601467556, −5.18477611890326861113988636492, −4.79783344238296680194544169065, −4.67640606851755122503509509453, −4.04109437924163289481913412426, −3.65437070100974978440392009636, −3.54476211802289688767595901742, −2.26696480926622674060055287545, −1.55965868580082390688896143531, −1.50360609129467400284194197383, −1.35887988298862927711710444349, −0.42995120715677560023629408979, −0.14649605497232185316215620469, 0.14649605497232185316215620469, 0.42995120715677560023629408979, 1.35887988298862927711710444349, 1.50360609129467400284194197383, 1.55965868580082390688896143531, 2.26696480926622674060055287545, 3.54476211802289688767595901742, 3.65437070100974978440392009636, 4.04109437924163289481913412426, 4.67640606851755122503509509453, 4.79783344238296680194544169065, 5.18477611890326861113988636492, 5.61581954701456905887601467556, 6.17298071896908446392345348886, 6.51287415339116265989039785308, 6.51434776403877759155207686533, 7.11057869757295200526171999191, 7.41770087390379670564938062402, 7.62749740066138978785466828663, 7.962343782178611885070074950542, 8.398062079144583811937111026447, 8.538156081920978798464806868610, 8.770332826021364783220626998641, 9.091412480882095486469291278981, 9.502140131357562771333181333054