Properties

Label 2-138-23.8-c3-0-6
Degree $2$
Conductor $138$
Sign $0.992 - 0.124i$
Analytic cond. $8.14226$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.284 + 1.97i)2-s + (−1.24 − 2.72i)3-s + (−3.83 − 1.12i)4-s + (1.48 + 1.70i)5-s + (5.75 − 1.69i)6-s + (3.78 + 2.43i)7-s + (3.32 − 7.27i)8-s + (−5.89 + 6.80i)9-s + (−3.80 + 2.44i)10-s + (−2.10 − 14.6i)11-s + (1.70 + 11.8i)12-s + (57.7 − 37.0i)13-s + (−5.89 + 6.80i)14-s + (2.81 − 6.16i)15-s + (13.4 + 8.65i)16-s + (65.6 − 19.2i)17-s + ⋯
L(s)  = 1  + (−0.100 + 0.699i)2-s + (−0.239 − 0.525i)3-s + (−0.479 − 0.140i)4-s + (0.132 + 0.152i)5-s + (0.391 − 0.115i)6-s + (0.204 + 0.131i)7-s + (0.146 − 0.321i)8-s + (−0.218 + 0.251i)9-s + (−0.120 + 0.0772i)10-s + (−0.0577 − 0.401i)11-s + (0.0410 + 0.285i)12-s + (1.23 − 0.791i)13-s + (−0.112 + 0.129i)14-s + (0.0484 − 0.106i)15-s + (0.210 + 0.135i)16-s + (0.937 − 0.275i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.124i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.992 - 0.124i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $0.992 - 0.124i$
Analytic conductor: \(8.14226\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :3/2),\ 0.992 - 0.124i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.49647 + 0.0933519i\)
\(L(\frac12)\) \(\approx\) \(1.49647 + 0.0933519i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.284 - 1.97i)T \)
3 \( 1 + (1.24 + 2.72i)T \)
23 \( 1 + (-79.2 - 76.7i)T \)
good5 \( 1 + (-1.48 - 1.70i)T + (-17.7 + 123. i)T^{2} \)
7 \( 1 + (-3.78 - 2.43i)T + (142. + 312. i)T^{2} \)
11 \( 1 + (2.10 + 14.6i)T + (-1.27e3 + 374. i)T^{2} \)
13 \( 1 + (-57.7 + 37.0i)T + (912. - 1.99e3i)T^{2} \)
17 \( 1 + (-65.6 + 19.2i)T + (4.13e3 - 2.65e3i)T^{2} \)
19 \( 1 + (-109. - 32.1i)T + (5.77e3 + 3.70e3i)T^{2} \)
29 \( 1 + (154. - 45.5i)T + (2.05e4 - 1.31e4i)T^{2} \)
31 \( 1 + (-19.3 + 42.4i)T + (-1.95e4 - 2.25e4i)T^{2} \)
37 \( 1 + (-46.5 + 53.7i)T + (-7.20e3 - 5.01e4i)T^{2} \)
41 \( 1 + (-179. - 207. i)T + (-9.80e3 + 6.82e4i)T^{2} \)
43 \( 1 + (52.4 + 114. i)T + (-5.20e4 + 6.00e4i)T^{2} \)
47 \( 1 - 290.T + 1.03e5T^{2} \)
53 \( 1 + (330. + 212. i)T + (6.18e4 + 1.35e5i)T^{2} \)
59 \( 1 + (652. - 419. i)T + (8.53e4 - 1.86e5i)T^{2} \)
61 \( 1 + (-271. + 595. i)T + (-1.48e5 - 1.71e5i)T^{2} \)
67 \( 1 + (23.8 - 166. i)T + (-2.88e5 - 8.47e4i)T^{2} \)
71 \( 1 + (29.3 - 204. i)T + (-3.43e5 - 1.00e5i)T^{2} \)
73 \( 1 + (540. + 158. i)T + (3.27e5 + 2.10e5i)T^{2} \)
79 \( 1 + (188. - 120. i)T + (2.04e5 - 4.48e5i)T^{2} \)
83 \( 1 + (14.5 - 16.8i)T + (-8.13e4 - 5.65e5i)T^{2} \)
89 \( 1 + (-326. - 714. i)T + (-4.61e5 + 5.32e5i)T^{2} \)
97 \( 1 + (-510. - 588. i)T + (-1.29e5 + 9.03e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95619884011577193857110167877, −11.74693318878548642557162903647, −10.71716853250663102382330004703, −9.464182508185774560843601144824, −8.223405488936517058563400024565, −7.43549659935460060592661595096, −6.07940171478349218324233831878, −5.32828142393674350106489515742, −3.35043145529751669519744366607, −1.04633693418780446304148221865, 1.29752670583523981500044593559, 3.30092060775115812482202514295, 4.56437885008107553712756927560, 5.80855146279480050603922268277, 7.45410422395929023079432515138, 8.887357381486600819504136962116, 9.623549323812977964776296437988, 10.79911773231155160070434470641, 11.46676565781799154464145088469, 12.54816045287562199092008418673

Graph of the $Z$-function along the critical line