Properties

Label 2-138-23.13-c3-0-1
Degree $2$
Conductor $138$
Sign $0.198 - 0.980i$
Analytic cond. $8.14226$
Root an. cond. $2.85346$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.30 − 1.51i)2-s + (−2.52 − 1.62i)3-s + (−0.569 + 3.95i)4-s + (2.02 − 4.44i)5-s + (0.853 + 5.93i)6-s + (−16.2 − 4.77i)7-s + (6.73 − 4.32i)8-s + (3.73 + 8.18i)9-s + (−9.36 + 2.75i)10-s + (−9.92 + 11.4i)11-s + (7.85 − 9.06i)12-s + (−17.3 + 5.08i)13-s + (14.0 + 30.8i)14-s + (−12.3 + 7.91i)15-s + (−15.3 − 4.50i)16-s + (11.0 + 76.9i)17-s + ⋯
L(s)  = 1  + (−0.463 − 0.534i)2-s + (−0.485 − 0.312i)3-s + (−0.0711 + 0.494i)4-s + (0.181 − 0.397i)5-s + (0.0580 + 0.404i)6-s + (−0.878 − 0.257i)7-s + (0.297 − 0.191i)8-s + (0.138 + 0.303i)9-s + (−0.296 + 0.0869i)10-s + (−0.272 + 0.314i)11-s + (0.189 − 0.218i)12-s + (−0.369 + 0.108i)13-s + (0.268 + 0.588i)14-s + (−0.212 + 0.136i)15-s + (−0.239 − 0.0704i)16-s + (0.157 + 1.09i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.198 - 0.980i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.198 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $0.198 - 0.980i$
Analytic conductor: \(8.14226\)
Root analytic conductor: \(2.85346\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :3/2),\ 0.198 - 0.980i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.308430 + 0.252207i\)
\(L(\frac12)\) \(\approx\) \(0.308430 + 0.252207i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.30 + 1.51i)T \)
3 \( 1 + (2.52 + 1.62i)T \)
23 \( 1 + (7.59 - 110. i)T \)
good5 \( 1 + (-2.02 + 4.44i)T + (-81.8 - 94.4i)T^{2} \)
7 \( 1 + (16.2 + 4.77i)T + (288. + 185. i)T^{2} \)
11 \( 1 + (9.92 - 11.4i)T + (-189. - 1.31e3i)T^{2} \)
13 \( 1 + (17.3 - 5.08i)T + (1.84e3 - 1.18e3i)T^{2} \)
17 \( 1 + (-11.0 - 76.9i)T + (-4.71e3 + 1.38e3i)T^{2} \)
19 \( 1 + (0.468 - 3.26i)T + (-6.58e3 - 1.93e3i)T^{2} \)
29 \( 1 + (-31.7 - 220. i)T + (-2.34e4 + 6.87e3i)T^{2} \)
31 \( 1 + (-11.9 + 7.66i)T + (1.23e4 - 2.70e4i)T^{2} \)
37 \( 1 + (36.4 + 79.8i)T + (-3.31e4 + 3.82e4i)T^{2} \)
41 \( 1 + (29.8 - 65.3i)T + (-4.51e4 - 5.20e4i)T^{2} \)
43 \( 1 + (268. + 172. i)T + (3.30e4 + 7.23e4i)T^{2} \)
47 \( 1 + 416.T + 1.03e5T^{2} \)
53 \( 1 + (-19.8 - 5.83i)T + (1.25e5 + 8.04e4i)T^{2} \)
59 \( 1 + (131. - 38.7i)T + (1.72e5 - 1.11e5i)T^{2} \)
61 \( 1 + (482. - 310. i)T + (9.42e4 - 2.06e5i)T^{2} \)
67 \( 1 + (154. + 177. i)T + (-4.28e4 + 2.97e5i)T^{2} \)
71 \( 1 + (-209. - 241. i)T + (-5.09e4 + 3.54e5i)T^{2} \)
73 \( 1 + (-156. + 1.08e3i)T + (-3.73e5 - 1.09e5i)T^{2} \)
79 \( 1 + (131. - 38.4i)T + (4.14e5 - 2.66e5i)T^{2} \)
83 \( 1 + (231. + 506. i)T + (-3.74e5 + 4.32e5i)T^{2} \)
89 \( 1 + (-662. - 425. i)T + (2.92e5 + 6.41e5i)T^{2} \)
97 \( 1 + (173. - 379. i)T + (-5.97e5 - 6.89e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79682786076058954864979562233, −12.01732811279121381950022788835, −10.78294109027450405016563369704, −9.961298771303194971453955348051, −8.946172032815678595923788984218, −7.62701217476415754129400570599, −6.51894424914384813221518011600, −5.08546700343556736934373153876, −3.41826433347919124624557280836, −1.55287008849914166372993513099, 0.24696336868877298326315719567, 2.85448242471065783379541591847, 4.79063550998537060535082399172, 6.08451933909028736384057679201, 6.87093146454067600653971644030, 8.260879066530174835085718660932, 9.568005022476260747285747014946, 10.16544566760194084377662858380, 11.31231121537900088093121869175, 12.43864584857289906057827865976

Graph of the $Z$-function along the critical line