Properties

Label 2-138-23.7-c2-0-1
Degree $2$
Conductor $138$
Sign $-0.951 - 0.308i$
Analytic cond. $3.76022$
Root an. cond. $1.93913$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.926 + 1.06i)2-s + (−1.45 + 0.936i)3-s + (−0.284 − 1.97i)4-s + (1.12 − 0.512i)5-s + (0.348 − 2.42i)6-s + (2.20 + 7.51i)7-s + (2.37 + 1.52i)8-s + (1.24 − 2.72i)9-s + (−0.491 + 1.67i)10-s + (−15.5 + 13.5i)11-s + (2.26 + 2.61i)12-s + (−14.5 − 4.27i)13-s + (−10.0 − 4.60i)14-s + (−1.15 + 1.79i)15-s + (−3.83 + 1.12i)16-s + (−19.6 − 2.82i)17-s + ⋯
L(s)  = 1  + (−0.463 + 0.534i)2-s + (−0.485 + 0.312i)3-s + (−0.0711 − 0.494i)4-s + (0.224 − 0.102i)5-s + (0.0580 − 0.404i)6-s + (0.315 + 1.07i)7-s + (0.297 + 0.191i)8-s + (0.138 − 0.303i)9-s + (−0.0491 + 0.167i)10-s + (−1.41 + 1.22i)11-s + (0.189 + 0.218i)12-s + (−1.12 − 0.328i)13-s + (−0.720 − 0.328i)14-s + (−0.0770 + 0.119i)15-s + (−0.239 + 0.0704i)16-s + (−1.15 − 0.166i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.951 - 0.308i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 138 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.951 - 0.308i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(138\)    =    \(2 \cdot 3 \cdot 23\)
Sign: $-0.951 - 0.308i$
Analytic conductor: \(3.76022\)
Root analytic conductor: \(1.93913\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{138} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 138,\ (\ :1),\ -0.951 - 0.308i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0925480 + 0.586089i\)
\(L(\frac12)\) \(\approx\) \(0.0925480 + 0.586089i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.926 - 1.06i)T \)
3 \( 1 + (1.45 - 0.936i)T \)
23 \( 1 + (20.9 - 9.49i)T \)
good5 \( 1 + (-1.12 + 0.512i)T + (16.3 - 18.8i)T^{2} \)
7 \( 1 + (-2.20 - 7.51i)T + (-41.2 + 26.4i)T^{2} \)
11 \( 1 + (15.5 - 13.5i)T + (17.2 - 119. i)T^{2} \)
13 \( 1 + (14.5 + 4.27i)T + (142. + 91.3i)T^{2} \)
17 \( 1 + (19.6 + 2.82i)T + (277. + 81.4i)T^{2} \)
19 \( 1 + (-32.9 + 4.74i)T + (346. - 101. i)T^{2} \)
29 \( 1 + (3.31 - 23.0i)T + (-806. - 236. i)T^{2} \)
31 \( 1 + (-14.5 - 9.35i)T + (399. + 874. i)T^{2} \)
37 \( 1 + (-30.6 - 13.9i)T + (896. + 1.03e3i)T^{2} \)
41 \( 1 + (-25.2 - 55.3i)T + (-1.10e3 + 1.27e3i)T^{2} \)
43 \( 1 + (28.8 + 44.8i)T + (-768. + 1.68e3i)T^{2} \)
47 \( 1 - 57.1T + 2.20e3T^{2} \)
53 \( 1 + (27.9 + 95.0i)T + (-2.36e3 + 1.51e3i)T^{2} \)
59 \( 1 + (-11.8 - 3.48i)T + (2.92e3 + 1.88e3i)T^{2} \)
61 \( 1 + (-22.3 + 34.8i)T + (-1.54e3 - 3.38e3i)T^{2} \)
67 \( 1 + (-65.1 - 56.4i)T + (638. + 4.44e3i)T^{2} \)
71 \( 1 + (-17.9 + 20.7i)T + (-717. - 4.98e3i)T^{2} \)
73 \( 1 + (-3.45 - 24.0i)T + (-5.11e3 + 1.50e3i)T^{2} \)
79 \( 1 + (15.9 - 54.2i)T + (-5.25e3 - 3.37e3i)T^{2} \)
83 \( 1 + (-30.1 - 13.7i)T + (4.51e3 + 5.20e3i)T^{2} \)
89 \( 1 + (2.22 + 3.45i)T + (-3.29e3 + 7.20e3i)T^{2} \)
97 \( 1 + (103. - 47.4i)T + (6.16e3 - 7.11e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.36724769275344418511371366616, −12.29421627457921356436554941086, −11.34498677592319477124201695342, −9.977731987519310665525310906581, −9.479633720031751851799570663537, −8.039590828857048825452631973682, −7.06525742448209046380880429061, −5.44461023711110444049380735338, −4.97089159413991887116669649868, −2.33920931461251281805565285346, 0.46214239915212153598133421204, 2.49909682828114588658221414739, 4.36049576759040536817561776570, 5.83470427155650174186408156722, 7.37712854961328168278056384709, 8.065371601268692479731585905608, 9.676003366385817105047267106448, 10.55512180502820518484083082919, 11.29573992292879557566251711005, 12.32093564259246832847652696557

Graph of the $Z$-function along the critical line