| L(s) = 1 | + (0.162 + 0.414i)3-s + (0.587 − 0.545i)9-s + (−0.440 − 1.92i)11-s + (−0.109 − 1.46i)17-s + (1.40 + 1.29i)19-s + (−0.988 − 0.149i)25-s + (0.722 + 0.347i)27-s + (0.727 − 0.495i)33-s + (1.03 + 1.29i)41-s + (−0.365 + 0.930i)43-s + (−0.5 + 0.866i)49-s + (0.587 − 0.283i)51-s + (−0.310 + 0.791i)57-s + (0.658 + 0.317i)59-s + (−0.733 − 0.680i)67-s + ⋯ |
| L(s) = 1 | + (0.162 + 0.414i)3-s + (0.587 − 0.545i)9-s + (−0.440 − 1.92i)11-s + (−0.109 − 1.46i)17-s + (1.40 + 1.29i)19-s + (−0.988 − 0.149i)25-s + (0.722 + 0.347i)27-s + (0.727 − 0.495i)33-s + (1.03 + 1.29i)41-s + (−0.365 + 0.930i)43-s + (−0.5 + 0.866i)49-s + (0.587 − 0.283i)51-s + (−0.310 + 0.791i)57-s + (0.658 + 0.317i)59-s + (−0.733 − 0.680i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.931 + 0.363i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.931 + 0.363i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.172609427\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.172609427\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 43 | \( 1 + (0.365 - 0.930i)T \) |
| good | 3 | \( 1 + (-0.162 - 0.414i)T + (-0.733 + 0.680i)T^{2} \) |
| 5 | \( 1 + (0.988 + 0.149i)T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.440 + 1.92i)T + (-0.900 + 0.433i)T^{2} \) |
| 13 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 17 | \( 1 + (0.109 + 1.46i)T + (-0.988 + 0.149i)T^{2} \) |
| 19 | \( 1 + (-1.40 - 1.29i)T + (0.0747 + 0.997i)T^{2} \) |
| 23 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 29 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 31 | \( 1 + (-0.955 + 0.294i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-1.03 - 1.29i)T + (-0.222 + 0.974i)T^{2} \) |
| 47 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 59 | \( 1 + (-0.658 - 0.317i)T + (0.623 + 0.781i)T^{2} \) |
| 61 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 67 | \( 1 + (0.733 + 0.680i)T + (0.0747 + 0.997i)T^{2} \) |
| 71 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 73 | \( 1 + (0.826 + 0.563i)T + (0.365 + 0.930i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.455 + 1.16i)T + (-0.733 + 0.680i)T^{2} \) |
| 89 | \( 1 + (-0.603 - 1.53i)T + (-0.733 + 0.680i)T^{2} \) |
| 97 | \( 1 + (0.162 + 0.712i)T + (-0.900 + 0.433i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.656973841267569333380322499316, −9.104758470696042337402293641178, −8.063616760004862354660454202133, −7.50104751517680674764516472286, −6.27692845194144639580758329375, −5.64381172696253198063873611018, −4.62774874494108411479795231234, −3.50519903291258897413177294888, −2.93636174871354404973200380918, −1.09150959803001508814673030050,
1.66354291776406214765805938279, 2.43739426212892491727553573317, 3.91093588903170774340929122812, 4.75857133546542325252606191899, 5.59428298060141500042050181033, 6.90990185876952542863947301394, 7.31551814358399727482897881802, 8.028372892364556229446862658413, 9.059952153905686198891867110794, 9.949461149240437671436828370836