| L(s) = 1 | + (1.02 − 1.78i)3-s + (1.41 + 2.45i)5-s + (−0.621 − 1.07i)9-s + (−3.23 + 5.61i)11-s − 1.96·13-s + 5.84·15-s + (−1.39 + 2.41i)17-s + (0.151 + 0.263i)19-s + (2.69 + 4.66i)23-s + (−1.51 + 2.63i)25-s + 3.61·27-s − 2.13·29-s + (−3.28 + 5.69i)31-s + (6.67 + 11.5i)33-s + (−3.87 − 6.70i)37-s + ⋯ |
| L(s) = 1 | + (0.594 − 1.02i)3-s + (0.633 + 1.09i)5-s + (−0.207 − 0.358i)9-s + (−0.976 + 1.69i)11-s − 0.544·13-s + 1.50·15-s + (−0.337 + 0.584i)17-s + (0.0348 + 0.0603i)19-s + (0.561 + 0.973i)23-s + (−0.303 + 0.526i)25-s + 0.696·27-s − 0.395·29-s + (−0.590 + 1.02i)31-s + (1.16 + 2.01i)33-s + (−0.636 − 1.10i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1372 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1372 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.867256528\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.867256528\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + (-1.02 + 1.78i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.41 - 2.45i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.23 - 5.61i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.96T + 13T^{2} \) |
| 17 | \( 1 + (1.39 - 2.41i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.151 - 0.263i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.69 - 4.66i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2.13T + 29T^{2} \) |
| 31 | \( 1 + (3.28 - 5.69i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.87 + 6.70i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6.51T + 41T^{2} \) |
| 43 | \( 1 + 10.6T + 43T^{2} \) |
| 47 | \( 1 + (-5.48 - 9.49i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.43 + 7.67i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.91 + 10.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.80 - 8.32i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.02 + 1.77i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.91T + 71T^{2} \) |
| 73 | \( 1 + (-1.56 + 2.71i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.40 + 2.43i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.482T + 83T^{2} \) |
| 89 | \( 1 + (7.00 + 12.1i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 5.17T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.848928031607493792041245020584, −8.874392877320328755408316162897, −7.80661427229906190142971590502, −7.16761853985199114377683390545, −6.89748301920032014757580844979, −5.69266999257344098865495282584, −4.73576477599197874896413517196, −3.28791894118216002164384705823, −2.28392669705322812149319031547, −1.84088994615320040970018657644,
0.67168468751493980764490586035, 2.42763432434685447187090293833, 3.31815686051053838256097078596, 4.42105123463863343623896889506, 5.18564906807172398935681763328, 5.78948574841764101050568633698, 7.06355617160587078361117489440, 8.350915540988729426873429245603, 8.670174569557857871084599147904, 9.382914018624827063680317937685