L(s) = 1 | + (−0.456 + 1.33i)2-s + (−1.58 − 1.22i)4-s + 3.36i·5-s + 4.47·7-s + (2.35 − 1.56i)8-s + (−4.50 − 1.53i)10-s + 0.608i·11-s + 1.03i·13-s + (−2.04 + 5.98i)14-s + (1.01 + 3.86i)16-s + 3.06·17-s + i·19-s + (4.11 − 5.33i)20-s + (−0.814 − 0.277i)22-s + 8.50·23-s + ⋯ |
L(s) = 1 | + (−0.322 + 0.946i)2-s + (−0.791 − 0.610i)4-s + 1.50i·5-s + 1.68·7-s + (0.833 − 0.552i)8-s + (−1.42 − 0.486i)10-s + 0.183i·11-s + 0.288i·13-s + (−0.545 + 1.59i)14-s + (0.253 + 0.967i)16-s + 0.743·17-s + 0.229i·19-s + (0.920 − 1.19i)20-s + (−0.173 − 0.0592i)22-s + 1.77·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.552 - 0.833i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.552 - 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.688435602\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.688435602\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.456 - 1.33i)T \) |
| 3 | \( 1 \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 - 3.36iT - 5T^{2} \) |
| 7 | \( 1 - 4.47T + 7T^{2} \) |
| 11 | \( 1 - 0.608iT - 11T^{2} \) |
| 13 | \( 1 - 1.03iT - 13T^{2} \) |
| 17 | \( 1 - 3.06T + 17T^{2} \) |
| 23 | \( 1 - 8.50T + 23T^{2} \) |
| 29 | \( 1 + 7.27iT - 29T^{2} \) |
| 31 | \( 1 - 4.02T + 31T^{2} \) |
| 37 | \( 1 + 4.31iT - 37T^{2} \) |
| 41 | \( 1 - 4.15T + 41T^{2} \) |
| 43 | \( 1 - 6.27iT - 43T^{2} \) |
| 47 | \( 1 + 4.73T + 47T^{2} \) |
| 53 | \( 1 - 6.98iT - 53T^{2} \) |
| 59 | \( 1 + 2.64iT - 59T^{2} \) |
| 61 | \( 1 + 5.11iT - 61T^{2} \) |
| 67 | \( 1 - 2.62iT - 67T^{2} \) |
| 71 | \( 1 + 12.0T + 71T^{2} \) |
| 73 | \( 1 + 12.5T + 73T^{2} \) |
| 79 | \( 1 + 0.913T + 79T^{2} \) |
| 83 | \( 1 - 0.887iT - 83T^{2} \) |
| 89 | \( 1 - 7.61T + 89T^{2} \) |
| 97 | \( 1 + 5.93T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.829952295198378976886896078729, −8.918427838840400683382638729631, −7.899062038576748159844693681775, −7.56915173335692635948729596981, −6.73350101908725261292425458004, −5.89109529474519085941415351941, −4.95931842998604120445446727255, −4.11715709202800775775940513808, −2.72711279409952339139388506392, −1.36976354048041330381686726233,
0.984067801459624489227430130069, 1.55321057336220789923495501003, 2.99526496935030018079538998125, 4.29806014936781506293359403689, 4.99530198697869347688022486177, 5.38501026197707412989570159822, 7.27438386119649877278135408478, 8.088711943890103187263968139991, 8.668653491550550256565433475769, 9.094549594116758007744364599872