L(s) = 1 | + (−1.09 − 0.889i)2-s + (0.418 + 1.95i)4-s + 3.13i·5-s − 0.535·7-s + (1.27 − 2.52i)8-s + (2.79 − 3.45i)10-s − 0.425i·11-s + 6.65i·13-s + (0.589 + 0.476i)14-s + (−3.64 + 1.63i)16-s − 7.33·17-s + i·19-s + (−6.13 + 1.31i)20-s + (−0.378 + 0.467i)22-s + 5.90·23-s + ⋯ |
L(s) = 1 | + (−0.777 − 0.628i)2-s + (0.209 + 0.977i)4-s + 1.40i·5-s − 0.202·7-s + (0.451 − 0.892i)8-s + (0.882 − 1.09i)10-s − 0.128i·11-s + 1.84i·13-s + (0.157 + 0.127i)14-s + (−0.912 + 0.409i)16-s − 1.77·17-s + 0.229i·19-s + (−1.37 + 0.293i)20-s + (−0.0806 + 0.0996i)22-s + 1.23·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.892 - 0.451i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.892 - 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4762352818\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4762352818\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.09 + 0.889i)T \) |
| 3 | \( 1 \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 - 3.13iT - 5T^{2} \) |
| 7 | \( 1 + 0.535T + 7T^{2} \) |
| 11 | \( 1 + 0.425iT - 11T^{2} \) |
| 13 | \( 1 - 6.65iT - 13T^{2} \) |
| 17 | \( 1 + 7.33T + 17T^{2} \) |
| 23 | \( 1 - 5.90T + 23T^{2} \) |
| 29 | \( 1 + 0.837iT - 29T^{2} \) |
| 31 | \( 1 + 3.16T + 31T^{2} \) |
| 37 | \( 1 + 3.49iT - 37T^{2} \) |
| 41 | \( 1 - 0.123T + 41T^{2} \) |
| 43 | \( 1 + 5.39iT - 43T^{2} \) |
| 47 | \( 1 - 2.02T + 47T^{2} \) |
| 53 | \( 1 + 5.82iT - 53T^{2} \) |
| 59 | \( 1 - 5.56iT - 59T^{2} \) |
| 61 | \( 1 + 6.99iT - 61T^{2} \) |
| 67 | \( 1 - 12.3iT - 67T^{2} \) |
| 71 | \( 1 + 12.1T + 71T^{2} \) |
| 73 | \( 1 + 6.99T + 73T^{2} \) |
| 79 | \( 1 - 2.07T + 79T^{2} \) |
| 83 | \( 1 + 11.8iT - 83T^{2} \) |
| 89 | \( 1 + 13.7T + 89T^{2} \) |
| 97 | \( 1 - 0.801T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.977569829141676356332402785345, −9.108047182178687556265448372242, −8.676174084357280490509247835262, −7.25650924266034251977294210605, −6.96273473421729539410851951940, −6.24781822940852065405490299562, −4.52112999975662755205708266022, −3.67337905566778030657363740800, −2.64876652369390862941761420599, −1.85685422373047762021813650035,
0.25521068562842073471120673113, 1.37483643411427005758312948590, 2.83352481571519689325324349102, 4.52387232373040949787564987715, 5.12173788448613041673285764863, 5.94075623390733748895658697296, 6.91466930241707669977301525004, 7.81125860486686446337618098354, 8.557514448062141703527124361275, 9.031278020436071533296318741466