L(s) = 1 | + (1.37 − 0.340i)2-s + (1.76 − 0.935i)4-s − 2.13i·5-s + 3.29·7-s + (2.10 − 1.88i)8-s + (−0.727 − 2.93i)10-s + 3.71i·11-s + 2.32i·13-s + (4.52 − 1.12i)14-s + (2.25 − 3.30i)16-s + 6.48·17-s − i·19-s + (−1.99 − 3.77i)20-s + (1.26 + 5.09i)22-s − 7.32·23-s + ⋯ |
L(s) = 1 | + (0.970 − 0.240i)2-s + (0.883 − 0.467i)4-s − 0.954i·5-s + 1.24·7-s + (0.745 − 0.666i)8-s + (−0.229 − 0.926i)10-s + 1.11i·11-s + 0.645i·13-s + (1.20 − 0.299i)14-s + (0.562 − 0.826i)16-s + 1.57·17-s − 0.229i·19-s + (−0.446 − 0.843i)20-s + (0.269 + 1.08i)22-s − 1.52·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.666 + 0.745i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.666 + 0.745i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.702569137\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.702569137\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.37 + 0.340i)T \) |
| 3 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 + 2.13iT - 5T^{2} \) |
| 7 | \( 1 - 3.29T + 7T^{2} \) |
| 11 | \( 1 - 3.71iT - 11T^{2} \) |
| 13 | \( 1 - 2.32iT - 13T^{2} \) |
| 17 | \( 1 - 6.48T + 17T^{2} \) |
| 23 | \( 1 + 7.32T + 23T^{2} \) |
| 29 | \( 1 - 2.59iT - 29T^{2} \) |
| 31 | \( 1 + 1.34T + 31T^{2} \) |
| 37 | \( 1 + 3.72iT - 37T^{2} \) |
| 41 | \( 1 + 6.52T + 41T^{2} \) |
| 43 | \( 1 + 1.97iT - 43T^{2} \) |
| 47 | \( 1 + 5.45T + 47T^{2} \) |
| 53 | \( 1 + 4.98iT - 53T^{2} \) |
| 59 | \( 1 + 9.67iT - 59T^{2} \) |
| 61 | \( 1 - 8.15iT - 61T^{2} \) |
| 67 | \( 1 + 0.524iT - 67T^{2} \) |
| 71 | \( 1 + 7.17T + 71T^{2} \) |
| 73 | \( 1 + 6.33T + 73T^{2} \) |
| 79 | \( 1 + 8.75T + 79T^{2} \) |
| 83 | \( 1 - 7.74iT - 83T^{2} \) |
| 89 | \( 1 - 1.04T + 89T^{2} \) |
| 97 | \( 1 + 0.117T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.702179023835731670160635725445, −8.572317452950098777719331880627, −7.76449578074903069641431721942, −7.04596208391375788163038880289, −5.83985794398335681465738487873, −5.02399106403579920174578271495, −4.57629489712794185823285820108, −3.62231679783030384563979817639, −2.05594796207227322655878695765, −1.38028559332456452677021464260,
1.57837701464188591506430509037, 2.90375717751873832115547255548, 3.54813800620072866372619709622, 4.67356163505933126045379968868, 5.67337492751450464490035978283, 6.10182709690345185371704430710, 7.28490090775500938220713565411, 7.952905011908413659145281498906, 8.428028310959263587649279880242, 10.11300142384942882389213931221