Properties

Label 2-1368-57.56-c1-0-3
Degree $2$
Conductor $1368$
Sign $-0.774 - 0.632i$
Analytic cond. $10.9235$
Root an. cond. $3.30507$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.42i·5-s − 0.394·7-s + 2.33i·11-s − 3.36i·13-s + 0.494i·17-s + (−0.300 + 4.34i)19-s + 3.79i·23-s − 6.75·25-s + 2.14·29-s + 7.04i·31-s − 1.35i·35-s − 7.30i·37-s + 3.81·41-s − 8.45·43-s + 2.43i·47-s + ⋯
L(s)  = 1  + 1.53i·5-s − 0.148·7-s + 0.703i·11-s − 0.933i·13-s + 0.119i·17-s + (−0.0690 + 0.997i)19-s + 0.790i·23-s − 1.35·25-s + 0.399·29-s + 1.26i·31-s − 0.228i·35-s − 1.20i·37-s + 0.595·41-s − 1.28·43-s + 0.355i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1368\)    =    \(2^{3} \cdot 3^{2} \cdot 19\)
Sign: $-0.774 - 0.632i$
Analytic conductor: \(10.9235\)
Root analytic conductor: \(3.30507\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1368} (1025, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1368,\ (\ :1/2),\ -0.774 - 0.632i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.140516768\)
\(L(\frac12)\) \(\approx\) \(1.140516768\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + (0.300 - 4.34i)T \)
good5 \( 1 - 3.42iT - 5T^{2} \)
7 \( 1 + 0.394T + 7T^{2} \)
11 \( 1 - 2.33iT - 11T^{2} \)
13 \( 1 + 3.36iT - 13T^{2} \)
17 \( 1 - 0.494iT - 17T^{2} \)
23 \( 1 - 3.79iT - 23T^{2} \)
29 \( 1 - 2.14T + 29T^{2} \)
31 \( 1 - 7.04iT - 31T^{2} \)
37 \( 1 + 7.30iT - 37T^{2} \)
41 \( 1 - 3.81T + 41T^{2} \)
43 \( 1 + 8.45T + 43T^{2} \)
47 \( 1 - 2.43iT - 47T^{2} \)
53 \( 1 + 10.9T + 53T^{2} \)
59 \( 1 + 6.33T + 59T^{2} \)
61 \( 1 + 10.5T + 61T^{2} \)
67 \( 1 + 5.01iT - 67T^{2} \)
71 \( 1 + 0.759T + 71T^{2} \)
73 \( 1 - 3.06T + 73T^{2} \)
79 \( 1 - 6.40iT - 79T^{2} \)
83 \( 1 - 1.54iT - 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 - 1.71iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07257318963960417808022285823, −9.290927171786668046591132527939, −8.014853193372043872938792792799, −7.50402538830599437657095336123, −6.62764086616359990063499210287, −5.97092694305641797645491404834, −4.89706109367886177040675666894, −3.58294764907386195423519916388, −3.00215949537470110838355759445, −1.78008067403451847915735729923, 0.45784250157850717202435449387, 1.71198597640306219034714639486, 3.10068011865215176237631267127, 4.45664716607557111623625230441, 4.80316146520882097105184845859, 5.95893218030682022212211291573, 6.69823941218086259108411350576, 7.904698395178155961273791593061, 8.566481784169703150317078684386, 9.190449275708081851262088035230

Graph of the $Z$-function along the critical line