L(s) = 1 | + 3.42i·5-s − 0.394·7-s + 2.33i·11-s − 3.36i·13-s + 0.494i·17-s + (−0.300 + 4.34i)19-s + 3.79i·23-s − 6.75·25-s + 2.14·29-s + 7.04i·31-s − 1.35i·35-s − 7.30i·37-s + 3.81·41-s − 8.45·43-s + 2.43i·47-s + ⋯ |
L(s) = 1 | + 1.53i·5-s − 0.148·7-s + 0.703i·11-s − 0.933i·13-s + 0.119i·17-s + (−0.0690 + 0.997i)19-s + 0.790i·23-s − 1.35·25-s + 0.399·29-s + 1.26i·31-s − 0.228i·35-s − 1.20i·37-s + 0.595·41-s − 1.28·43-s + 0.355i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.140516768\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.140516768\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (0.300 - 4.34i)T \) |
good | 5 | \( 1 - 3.42iT - 5T^{2} \) |
| 7 | \( 1 + 0.394T + 7T^{2} \) |
| 11 | \( 1 - 2.33iT - 11T^{2} \) |
| 13 | \( 1 + 3.36iT - 13T^{2} \) |
| 17 | \( 1 - 0.494iT - 17T^{2} \) |
| 23 | \( 1 - 3.79iT - 23T^{2} \) |
| 29 | \( 1 - 2.14T + 29T^{2} \) |
| 31 | \( 1 - 7.04iT - 31T^{2} \) |
| 37 | \( 1 + 7.30iT - 37T^{2} \) |
| 41 | \( 1 - 3.81T + 41T^{2} \) |
| 43 | \( 1 + 8.45T + 43T^{2} \) |
| 47 | \( 1 - 2.43iT - 47T^{2} \) |
| 53 | \( 1 + 10.9T + 53T^{2} \) |
| 59 | \( 1 + 6.33T + 59T^{2} \) |
| 61 | \( 1 + 10.5T + 61T^{2} \) |
| 67 | \( 1 + 5.01iT - 67T^{2} \) |
| 71 | \( 1 + 0.759T + 71T^{2} \) |
| 73 | \( 1 - 3.06T + 73T^{2} \) |
| 79 | \( 1 - 6.40iT - 79T^{2} \) |
| 83 | \( 1 - 1.54iT - 83T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 - 1.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07257318963960417808022285823, −9.290927171786668046591132527939, −8.014853193372043872938792792799, −7.50402538830599437657095336123, −6.62764086616359990063499210287, −5.97092694305641797645491404834, −4.89706109367886177040675666894, −3.58294764907386195423519916388, −3.00215949537470110838355759445, −1.78008067403451847915735729923,
0.45784250157850717202435449387, 1.71198597640306219034714639486, 3.10068011865215176237631267127, 4.45664716607557111623625230441, 4.80316146520882097105184845859, 5.95893218030682022212211291573, 6.69823941218086259108411350576, 7.904698395178155961273791593061, 8.566481784169703150317078684386, 9.190449275708081851262088035230