L(s) = 1 | + 2.32i·5-s + 4.34·7-s − 0.264i·11-s + 6.38i·13-s − 2.56i·17-s + (2.62 + 3.47i)19-s − 2.66i·23-s − 0.426·25-s − 8.92·29-s − 1.78i·31-s + 10.1i·35-s − 3.08i·37-s + 7.44·41-s − 5.05·43-s + 7.45i·47-s + ⋯ |
L(s) = 1 | + 1.04i·5-s + 1.64·7-s − 0.0797i·11-s + 1.76i·13-s − 0.621i·17-s + (0.602 + 0.798i)19-s − 0.556i·23-s − 0.0852·25-s − 1.65·29-s − 0.320i·31-s + 1.71i·35-s − 0.507i·37-s + 1.16·41-s − 0.770·43-s + 1.08i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.303 - 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.303 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.963653959\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.963653959\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (-2.62 - 3.47i)T \) |
good | 5 | \( 1 - 2.32iT - 5T^{2} \) |
| 7 | \( 1 - 4.34T + 7T^{2} \) |
| 11 | \( 1 + 0.264iT - 11T^{2} \) |
| 13 | \( 1 - 6.38iT - 13T^{2} \) |
| 17 | \( 1 + 2.56iT - 17T^{2} \) |
| 23 | \( 1 + 2.66iT - 23T^{2} \) |
| 29 | \( 1 + 8.92T + 29T^{2} \) |
| 31 | \( 1 + 1.78iT - 31T^{2} \) |
| 37 | \( 1 + 3.08iT - 37T^{2} \) |
| 41 | \( 1 - 7.44T + 41T^{2} \) |
| 43 | \( 1 + 5.05T + 43T^{2} \) |
| 47 | \( 1 - 7.45iT - 47T^{2} \) |
| 53 | \( 1 + 4.10T + 53T^{2} \) |
| 59 | \( 1 - 8.36T + 59T^{2} \) |
| 61 | \( 1 + 8.45T + 61T^{2} \) |
| 67 | \( 1 + 2.35iT - 67T^{2} \) |
| 71 | \( 1 + 5.02T + 71T^{2} \) |
| 73 | \( 1 - 14.9T + 73T^{2} \) |
| 79 | \( 1 - 6.23iT - 79T^{2} \) |
| 83 | \( 1 - 16.0iT - 83T^{2} \) |
| 89 | \( 1 + 8.25T + 89T^{2} \) |
| 97 | \( 1 + 15.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.680982495324993040052875690858, −9.011034544738821619556887307553, −7.964715543108766162788862539064, −7.37713927045492216632797902107, −6.60352942873779855573603152766, −5.58038782044077925962079747428, −4.61681421069477944984841477402, −3.80508355773161290146248071665, −2.45228934591399906798430130165, −1.57048878226440236046034666152,
0.874987583331841899485346854896, 1.88966024163281569896995683768, 3.34668080717882999149001198063, 4.55531474087652865672342287000, 5.21682490262067582341217144187, 5.73380836149251356438998001384, 7.29919094485546968102604814608, 7.944914979292557114380915282042, 8.499115195752807581347456647622, 9.270331993170375990440008645559